file: 610_F02_probs5.doc RWN 10/07/02
ENEE 610 Fall 2002
Problems to consider \#5

1. For the terminated circuit shown find V1/I2 in terms of the $Y(s)$ matrix of the 2 -port.

2. Repeat 1. for the following circuit.

3. Give the conditions on the transfer function $T(s)=V 1 / I 2$ for it to be realizable when the 2 -port for $Y(s)$ is a lossless ladder and when $R>0$. What changes if the 2 -port is lossless but not restricted to be a ladder? What if $R<0$ is allowed?
4. If possible synthesize $T(s)=V 1 / I 2$ by one or both of the above two structures:
a) $T(s)=\frac{20}{s^{5}+5 s^{4}+3 s^{3}+2 s^{2}+5 s+3}$
b) $T(s)=\frac{20 s^{3}+10 s}{s^{5}+5 s^{4}+3 s^{3}+2 s^{2}+5 s+3}$
5. Consider all of the above in the case where $Y(s)$ is RC.
6. Show that for a positive real nxn matrix $Y(s)$ the ith pole on the j ω axis is simple with a residue matrix H_{i} which is Hermitian positive semi-definite. Thus the contribution of the pole and its conjugate take the form:
a) if at infinity: $\mathrm{sH}_{\infty}=>\mathrm{H}_{\infty}$ positive semidefinite
b) if at zero: $\frac{1}{\mathrm{~s}} \mathrm{H}_{0}=>\mathrm{H}_{0}$ positive semidefinite
c) if finite and non-zero:

$$
\frac{1}{s-j \omega_{i}} H_{i}+\frac{1}{s+j \omega_{i}} H_{i}^{*}=\frac{s\left(H_{i}+H_{i}^{T}\right)+j\left(H_{i}-H_{i}^{T}\right)}{2\left(s^{2}+\omega_{i}^{2}\right)}
$$

where
$\frac{1}{2}\left(\mathrm{H}_{\mathrm{i}}+\mathrm{H}_{\mathrm{i}}^{\mathrm{T}}\right)=$ Real $_$part $\left(\mathrm{H}_{\mathrm{i}}\right)=$ Symmetric_part $\left(\mathrm{H}_{\mathrm{i}}\right)=>$ positive semisdefinite and

$$
\frac{1}{2 \mathrm{j}}\left(\mathrm{H}_{\mathrm{i}}-\mathrm{H}_{\mathrm{i}}^{\mathrm{T}}\right)=\text { Imaginary } _\operatorname{part}\left(\mathrm{H}_{\mathrm{i}}\right)=\text { Skew_part }\left(\frac{1}{\mathrm{j}} \mathrm{H}_{\mathrm{i}}\right)
$$

hint: to do this consider a small circle around the pole and check the angle as a vector moves from -90 degrees to +90 degrees in the right half plane where the real part of $V^{T *} Y(s) V$ needs to be non-negative for all complex vectors V.
5. Following up on 4. give the partial fraction expansion for
$Y(s)=\left[\begin{array}{cc}\frac{\left(3 \mathrm{~s}^{2}+2\right)\left(5 \mathrm{~s}^{2}+10\right)}{\mathrm{s}\left(\mathrm{s}^{2}+1\right)\left(\mathrm{s}^{2}+9\right)} & \frac{\left(3 \mathrm{~s}^{2}+2\right)\left(5 \mathrm{~s}^{2}-10\right)}{\mathrm{s}\left(\mathrm{s}^{2}+1\right)\left(\mathrm{s}^{2}+9\right)} \\ \frac{\left(\mathrm{s}^{2}+2\right)\left(5 \mathrm{~s}^{2}+10\right)}{\mathrm{s}\left(\mathrm{s}^{2}+1\right)\left(\mathrm{s}^{2}+9\right)} & \frac{\left(3 \mathrm{~s}^{2}+2\right)\left(5 \mathrm{~s}^{2}+10\right)\left(6 \mathrm{~s}^{2}+60\right)}{\mathrm{s}\left(\mathrm{s}^{2}+1\right)\left(\mathrm{s}^{2}+9\right)}\end{array}\right]$

Is this admittance matrix positive real? Lossless? Find the corresponding scattering matrix.

