file: 610_F02_probs3.doc RWN 10/02/02
ENEE 610 Fall 2002
Problems to consider \#3

1. Determine which of the following are positive real and which are bounded real; give your reasons
a) $\quad F(S)=0.5$
b) $F(s)=\frac{2}{s+1}+\frac{3}{s-3}-\frac{5}{s+5}$
c) $\quad \mathrm{F}(\mathrm{s})=1_{2}+\frac{1}{\mathrm{~s}}\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$
d) $\quad \mathrm{F}(\mathrm{s})=1_{2}+\frac{1}{\mathrm{~s}+8}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
e) $\quad \mathrm{F}(\mathrm{s})=\sqrt{9(\mathrm{~s}+4)}$
f) $\quad \mathrm{F}(\mathrm{s})=\operatorname{ctanh}(9[\mathrm{~s}+4])$
2. Show that the following $F(s)$ can be a lossless admittance and give four different syntheses as an admittance. Repeat if it is considered as an impedance. What if it is a scattering coefficient? Assuming it is an admittance find the corresponding scattering coefficient; find the poles and zeros and check that $S(s) S(-s)=1$.

$$
\mathrm{F}(\mathrm{~s})=\frac{5 s\left(s^{2}+9\right)\left(s^{2}+25\right)}{\left(s^{2}+1\right)\left(s^{2}+16\right)}
$$

3. Consider the voltage out over voltage in transfer function

$$
\mathrm{T}(\mathrm{~s})=\frac{10 \mathrm{~s}}{(\mathrm{~s}+5)\left(\mathrm{s}^{2}+5 s+25\right)}
$$

Give several means to realize this through a 2 -port structure. Can it be realized by a resistor loaded RC 2-port? Check one of your realizations by setting up an indefinite matrix considering all internal nodes and then eliminating internal nodes.
4. Given real n-vectors x, y with the scalar product $\langle y, x\rangle=y^{T *} x$ where * $=$ complex conjugate (which can be ignored at this point), show that the following is a bounded real matrix. If this is a scattering matrix, if possible find the corresponding admittance Y_{x}. Give a circuit that realizes this S_{x} as a scatteromg matrix.

$$
\mathrm{S}_{\mathrm{x}}=1_{\mathrm{n}}-\frac{2}{\langle\mathrm{x} \cdot \mathrm{x}\rangle} \mathrm{xx}^{\mathrm{T}}
$$

5. For S. of 4. above find $S=S_{y} S_{x}$ and show that this product of two scattering matrices is bounded real. Is it equal to $S_{y x}$?
6. Consider similar questions to 4. above for

$$
S_{x, y}=1_{n}-\frac{2}{\langle x . y\rangle} x^{T}
$$

6. For what $\mathrm{f}(\mathrm{s})$ is the following bounded real?

$$
S_{x}(s)=1_{n}-2 f(s) \frac{x^{T}}{\langle x \cdot x\rangle}
$$

