ENEE 610 Outline of Lecture 1 of 08/29/01

1. Science => analysis; Engineering => design; synthesis => mathematical theory of design 2. Example of synthesis: admittance $y(s) = \frac{5s(s^2 + 3)}{(s^2 + a)}$ partial fraction expansion $y(s) = \frac{5s(s^2 + 3)}{(s^2 + a)} = 5s + \frac{k(s+c)}{s^2 + a}$: 15s = 5as + ks + kc $kc = 0ask \neq 0c = 0; k = 5(3-a)$ Circuit: $y(s) = 5s + \frac{1}{\frac{s}{5(3-a)} + \frac{a}{5(3-a)}}$

Elements are positive if $3 \ge a$, and $a \ge 0$; thus passive if $0 \le a \le 3$ and active otherwise. If $0 \le a \le 3$ then poles and zeros are simple, alternate on j ω axis, with real and positive residues; in this case y(s) is positive real and lossless. In this lossless case y(s) is odd, that is the even part is zero where 2Ev[y(s)]=y(s)+y(-s), and the coefficients are real.

Definition of positive real: The (scalar) function y(s) is a positive-real function of the complex variable $s=\sigma+j\omega$ if

1. $y(\sigma)$ is real for $\sigma > 0$ (means real components)

2. y(s) is analytic in $\sigma > 0$ (means some sort of stability)

3. $2\text{Re}[y(s)]=y(s)+y^*(s) \ge 0$ in $\sigma > 0$ (means a passive circuit; *=complex conjugate) Passivity means no more energy can come out of the circuit than goes in. Note: $y(s)=s^{1/2}$ is positive real as is $y(s)=\tanh(s)$. If y(s) is rational then coefficients are real, there are no poles in the RHP, only simple poles with real residues on the imaginary axis. An odd positive real function is lossless; examples: $\tanh(s)$ and the y(s) of above

circuit.