ENEE 610 To Consider \#8

1. Read chapter 11, pp. 450-479, on stability of linear and nonlinear networks.
2. Put into Spice the multiplier discussed in class. Check the range of the adder portion and of the multiplier itself.

Reference: K. Kimura, "An MOS Four-Quadrant Analog Multiplier Based on the Multitail Technique Using a Quadritail Cell as a Multiplier Core," IEEE Transactions on Circuits and Systems - I, Vol. 42, No. 8, August 1995, pp. 448-454.
3. Use the multiplier of 2 . above to realize the equations, where k is a parameter, $-1<\mathrm{k}<1$.

$$
\begin{aligned}
& \frac{d x}{d t}=(1-x) y \\
& \frac{d y}{d t}=k(x-1) y
\end{aligned}
$$

Show that $(\mathrm{x}, \mathrm{y})=(0,0)$ is an equilibrium point for this system and determine for what k the equilibrium point is a) stable, b) asymptotically stable, c) globally asymptotically stable.
4. For the circuit of 8 . of To Consider \#7 (repeated below), let node 1 be the at the junction of R1-C1-R2 and node 2 at the junction of R3-C3-G1. Set up the indefinite admittance matrix and from this by eliminating the internal node find the nodal admittance matrix. From that find the voltage at node 2 when a current source Iin is applied to node 1 .

5. For the following bridged T find the "2-port" nodal admittance matrix by setting up the indefinite admittance matrix and eliminating internal nodes. Use this to show that Vout/Vin can have a zero in the right half plane for passive circuits.

