ENEE 610 To Consider \#5

1. Read sections 8.8 , pages $378-382$, on sensitivity, as well as sections $5.4 \& 5.5$, pages 216-233, on the state variable formulation.
2. Find the even part of

$$
y(s)=\frac{s^{2}+a s+b}{(s+c)^{2}}
$$

and then evaluate this for $\mathrm{s}=\mathrm{j} \omega$. Locate all the zeros of the even part.
3. Show that the $y(s)$ of 2 . is positive real for $a=1, b=c=3$ and find all zeros of its even part. Find its minimum over $\mathrm{s}=\mathrm{j} \omega$. Extract a resistor with this minimum conductance and show that the resulting function is not zero at the minimum frequency. Then use a Richards' function to perform synthesis in two different ways, one in cascade form and the other in bridge form using the Bott-Duffin synthesis.
4. For the synthesis $y(s)$ of 3 . above find the sensitivity to c as well as to the gyrator conductance in the cascade synthesis.
5. For the cascade synthesis of 3 . above, set up the state variable equations [equations (5.4-1) \& (5.4.3) of page 217 of the text]

$$
\begin{aligned}
& \frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{Ax}+\mathrm{Bu} \\
& \mathrm{y}=\mathrm{Cx}+\mathrm{Du}
\end{aligned}
$$

6.(harder problem) Synthesis can proceed without forming the minimum function. For this one can use the Richards' function with k a complex zero of the even part giving complex valued elements and then repeating at the conjugate zero of the even part, after which the two complex 2-ports are combined into one real 2-port by examining their combined Y matrix. Carry out this type of synthesis on the function of 3. above.

