ENEE 610 To Consider \#4

1. Read sections $8.5,8.6$, and 8.7 , pages $352-378$, on general positive real function synthesis as well as active RC synthesis.
2. Synthesize by an active RC circuit

$$
\frac{\mathrm{V}_{\mathrm{O}}}{\mathrm{~V}_{\mathrm{i}}}=\frac{3 \mathrm{~s}+5}{(3 \mathrm{~s}+1)\left(\mathrm{s}^{2}+2 \mathrm{~s}+5\right)}
$$

3. Find the even part of

$$
y(s)=\frac{s^{2}+a s+2}{s^{2}+3 s+4}
$$

and then evaluate this for $\mathrm{s}=\mathrm{j} \omega$. Find those a for which the real part is non-negative for all $\mathrm{s}=\mathrm{j} \omega$.
4. For the $y(s)$ of 3 . above make it into a minimum function by adding or subtracting a constant (that is, if it is positive real subtract a constant and if not add a constant [which would, though, require a negative resistor in the circuit]).
Then realize the resulting minimum function use the Richards' functions to synthesize as far as possible in cascade form.

