Problem 3.1

Creat Cell, name $=$ MyPAD; Rank $=1$.
Procedures to build the cell:

	Layr	Size (um*um)	Obj	Rule
Metal1	Metal1	$100^{*} 100$	BOX	
Via	VIA	$94^{* 94}$	BOX	$>=3$ um to Metl1 edge
Metal2	Metal2	$100^{*} 100$	BOX	
OverGlass	OVGL	$90^{* 90}$	BOX	Exactly5um to Metl 1 edge
Outline	OTLN	$180 * 180$, also refer book Fig 3.7 for detail of its position	BOX	make sure the distance between pads >75 um

The result is shown as:

Then, we will Layout our PADFRAME.
Create a new cell, name $=$ MyPDFRAME, RANK $=2$
$\mathrm{Obj}=\mathrm{MyPAD}$, add them one by one according to specific positions in the design(according to Fig.3.6). Click keyboard x or y will pop up a window to let you input the position, which might be helpful in the problem.

Also notice for some cell, we need to rotate or flip our cell in order to get the Fig.3.6. Please review the Help file of COMMAND in "Rot" and "Flip" to find how to use this function.
The result looks like:

Also, since we are not measuring anything for this problem, you could also chose to print to clipboard instead of printscreen, to save your ink of the printer *_^.

By changing the button in the menu from full to Outl, you can show the outline or the full lay out on your screen. Enjoy it..

Problem 3.6

Consider only the plate capacitance, assume the area of metall and metal 2 is $A \mu \mathrm{~m}^{2}$. The capacitance between metall and metal 2 is 38 AaF , and capacitance between metall and substrate is 26 AaF . The voltage change on metall $=1 \mathrm{~V} \times(38 \mathrm{AaF} /(38 \mathrm{~A}+26 \mathrm{~A}) \mathrm{aF}) \approx$ 0.594 V

Problem 3.7

Ans: Taking Jal $=1 \mathrm{~mA} / \mathrm{um}$. The maximum xurrent $=5 \mathrm{um} \times \operatorname{lmA} / \mathrm{um}=5 \mathrm{~mA}$. The limitation $=5 \mathrm{~mA} /(0.4 \mathrm{~mA} /$ contact $)=12.5 \Rightarrow 13$ contact needed.

Problem 3.9

The inductance of a $4 \mu \mathrm{~m}$ wide piece of metal 2 is
$\mathrm{L}(\mathrm{nH} / \mathrm{mm})=1.25 /(4 / 1.5+1.393+0.667 \times \ln (4 / 1.5+1.44) \approx \underline{0.25 n H} / \mathrm{mm}$

P3. 10

