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Abstract— Visual sensors have experienced a tremendous
amount of growth and are becoming increasingly popular every
year. Such rapid technology development and widespread use has
led to a number of new problems related to protecting intellectual
property rights, handling patent infringements, authenticating
acquisition source, and identifying content manipulations. This
paper introduces non-intrusive component forensics as a new
methodology for forensic analysis. Non-intrusive component
forensics aims at identifying the algorithms and parameters
employed inside the various processing modules of a digital
device, using only the sample data collected from device outputs
without breaking the device apart. In this paper, we propose a
novel methodology for non-intrusive forensic analysis of visual
sensors, and develop techniques to estimate the algorithms and
parameters employed by such important camera components
as color filter array and color interpolation modules. The
estimated interpolation coefficients provide useful features to
build an efficient camera identifier to determine the brand/make
from which an image was captured. The results obtained from
such component analysis are also used to study the similarities
between the technologies employed by different camera models to
identify potential infringement/licensing and to facilitate studies
on technology evolution.

Index Terms: Visual sensors, component forensics, non-
intrusive image forensics, digital forensic signal processing, infrige-
ment/licensing forensics, evolutionary forensics, camera identifica-
tion.

I. INTRODUCTION

Visual sensors have experienced tremendous growth in
recent decades. The resolution and quality of electronic imag-
ing have been steadily improving, and digital cameras are
becoming ubiquitous. Shipment of digital cameras alone has
grown from $46.4 million in 2003 to $62 million in 2004,
forming an approximately $15 billion market worldwide [1].
Digital images taken by various imaging devices have been
used in a growing number of applications, from military and
reconnaissance to medical diagnosis and consumer photogra-
phy. Consequently, a series of new forensic issues arise amidst
such rapid advancement and widespread adoption of imaging
technologies. For example, one can readily ask what kinds of
hardware and software components as well as their parameters
have been employed inside the devices? Given a digital image,
which imaging sensor or which brand of sensors was used to
acquire the image? What kinds of legitimate processing and
undesired alteration have been applied to an image since it
leaves the device?

There are various ways to address the questions at hand.
The most challenging yet powerful approach is to answer
them using the clues obtained from the output images without
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having access to the devices – that is, by a non-intrusive
approach. In this paper, we propose to develop a new foren-
sic methodology called non-intrusive component forensics,
which aims at identifying the components inside a visual
device solely from its output data by inferring what algo-
rithms/processing are employed and estimating their parameter
settings. Furthermore, building upon component forensics, we
extend these ideas to address a number of larger forensic issues
in discovering technology infringement, protecting intellectual
property rights, and identifying acquisition devices.

For centuries, intellectual property protection has played
a crucial role in fostering innovation, as it has been known
for “adding the fuel of interest to the fire of genius” since
the time of Abraham Lincoln. Fierce competition in the
electronic imaging industry has led to an increasing number
of infringement cases filed in U.S. courts. The remunerations
awarded to successful prosecution have also grown tremen-
dously, sometimes in billions of dollars. For example, the
Ampex Corporation has more than 600 patents related to
digital cameras and recently received more than $275-million
compensation from lawsuits and settlements involving patent
infringement cases with many digital camera vendors using
one of its patents [2]. According to the U.S. patent law [3],
infringement of a patent consists of the unauthorized making,
using, offering for sale or selling any patented invention
during the term of its validity. Patent infringement is usually
difficult to detect, and even harder to prove in the court of
law. The burden of proof often lies on patent holders, who
are expected to provide solid evidence to substantiate their
accusations. A common way to perform infringement analysis
is to examine the design and implementation of a product and
to look for similarities with what have been claimed in existing
patents, through some type of reverse engineering. However,
this approach could be very cumbersome and ineffective, for
example, it may involve going over VHDL design codes of an
IC chip in charge of core information processing tasks, which
is a daunting task even to the most experienced expert in the
field. Such analysis is often limited to the implementation of
the idea rather than the idea itself, and thus could potentially
lead to misleading conclusions [4] [5]. Component forensics
is an important technology to detect patent infringement and
protect intellectual property rights, by obtaining evidence
about the algorithms employed in various components of the
digital device.

Component forensics also serves as a foundation to establish
the trustworthiness of imaging devices. With the fast devel-
opment of tools to manipulate multimedia data, the integrity
of both content and acquisition device has become particu-
larly important when images are used as critical evidence in
journalism, reconnaissance, and law enforcement applications.
For example, information about hardware/software modules



2

and their parameters in a camera can help building camera
identification systems. Such systems would provide useful
acquisition forensic information to law enforcement and in-
telligence agencies about which camera or which brand of
camera is used to acquire an image. Additionally, component
forensics helps establish a solid model on the characteristics
of image that is obtained directly from a camera. This in turn
will facilitate tampering forensics to determine if there is any
additional editing and processing applied to an image since it
leaves the camera.

We can classify component forensics into three main cate-
gories, based on the nature of the available evidences:

1) Intrusive Forensics: A forensic analyst has access to the
device in question and can disassemble it to carefully
examine every part, including analyzing any available
intermediate signals and states to identify the algorithms
employed in each of its processing blocks.

2) Semi Non-Intrusive Forensics: An analyst has access to
the device as a black box. He/she can design appropriate
inputs to be fed into the device so as to collect forensic
evidence about the processing techniques and parameters
of the individual components inside.

3) Non-Intrusive Forensics: An analyst does not have
access to the device in question. He/she is provided with
some sample data produced by the device, and studies
them to gather forensic evidence.

In this paper, we illustrate the proposed non-intrusive
component forensic methodology for visual sensors, while
the suggested techniques can be extended to other types of
acquisition models, and sensing technologies, with appropriate
modifications 1. We focus on important camera components
such as the color filter array (CFA) and the color interpolation
algorithms. Our proposed techniques aim to determine the
parameters of CFA and the interpolation algorithms using only
sample output images obtained over diverse and uncontrolled
input conditions. The features and acquisition models that
we develop can be used to construct an efficient camera
identifier that determines the brand/type of camera used to take
the image. Further, our forensic algorithms can quantitatively
help ascertain the similarities and differences among the
corresponding camera components of different cameras. For
devices from different vendors, the digital forensic knowledge
obtained from such analysis can provide clues and evidence
on technology infringement or licensing, which we shall
refer to as infringement/licensing forensics, and will assist
the enforcement of intellectual rights protection and foster
technology innovation. For devices of the same brand but
different models released at different years and/or at different
price tiers, our analysis forms a basis of evolutionary forensics,
as it can provide clues on technology evolution.

This paper is organized as follows. After reviewing related
works in Section II, we present in Section III the image
capturing process in digital cameras and our problem for-

1For example, our recent work examined a modified imaging model to
include digital scanners that handle color differently from cameras and have
obtained good forensics results [38].

mulation. In Section IV, we present methods to identify the
CFA pattern and the color interpolation algorithm. We then
illustrate proofs of concept with synthetic data in Section V-A
and present results with a real data set of 19 cameras in Section
V-B. The estimated model parameters are used to construct a
camera identifier and to study the similarities (and differences)
among the cameras in Section VI. Section VII generalizes
the proposed methods to extend to other devices. The final
conclusions are drawn in Section VIII.

II. RELATED PRIOR WORKS ON FORENSIC ANALYSIS

While a growing amount of signal processing research in the
recent years has been devoted to the security and protection of
multimedia information (e.g. through encryption, hashing, and
data embedding), forensic research on digital visual devices is
still in its infancy. Related prior art on non-intrusive image
forensics fall into the following two main categories.

In the forgery detection literature, there have been works
that consider a tampered image has undergone a series of pro-
cessing operations. Based on this observation, several methods
were proposed to explore the salient features associated with
each of these tampering operations, such as resampling [6],
luminance and brightness change, copy-paste operations [7],
and inconsistent noise patterns [8] or lighting [9]. For image
compression such as JPEG that involves quantization in the
discrete cosine transform (DCT) domain, statistical analysis
based on binning techniques have been used to estimate the
quantization matrices [10] [11]. Higher order statistics such
as the bispectrum have been proposed to identify contrast
changes, gamma correction [12], and other nonlinear point
operations [13] on images; and wavelet based features have
been used to detect image tampering [14], and identify
photorealism [15]. Physics motivated features have been in-
troduced to distinguish photographic images and computer
graphics [16]. However, most of these techniques mentioned
above are primarily targeted at finding the processing steps
that occurs after the image has been captured by the camera,
and are not for finding the algorithms and parameters used in
various components inside the digital camera.

A second group of prior art on non-intrusive image forensics
concerns camera identification. Camera pixel defects [17],
pattern noise associated with the non-uniformity of dark
currents on camera CCDs [18], and fixed pixel noise [19]
inherent to an image sensor have been recently used as unique
camera identifiers. While useful in some forensic tasks when
a suspicious camera is available in the testing, this approach
does not provide information about the internal components
and cannot be used for identifying common features tied to
the same camera models and makes. Another recent approach
employs statistics from visually similar images taken with
different cameras to train classifiers for identifying the camera
source [20] [21]. Features such as average pixel values, RGB
pairs correlation, and neighbor center of mass are used in [20].
In [21], the authors employ the Expectation Maximization
algorithm introduced in [6] [22] to detect traces of color
interpolation and resampling. The coefficient weights from the
image and the peak magnitude and locations of the spectral
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representation of the coefficients are used as features to build
the camera brand classifier. Although good results were re-
ported in distinguishing pictures taken in controlled scenarios
with three different cameras, its ability to differentiate under
diverse training sets, non-intrusive testing conditions, and in
the presence of compression noise needs further investigation.
Further, the classification results do not provide knowledge
on the techniques employed in various processing modules
inside the camera. As shall be seen from our results later in
the paper, by acquiring information about the CFA pattern and
the interpolation algorithms used in a camera, our proposed
forensic methodology can support more accurate identification
for a large number of cameras.

III. CAMERA CAPTURING MODEL AND PROBLEM
FORMULATION

In this section, we discuss the image capturing model and
present our problem formulation. As illustrated by the image
capturing model in Fig. 1(a), the light from a scene pass
through a lens and optical filters, and is finally recorded
by an array of charge coupled device (CCD) detectors. Few
consumer-level color cameras directly acquire full-resolution
information for all three primary colors (usually red, green,
and blue) 2. This is not only because of the high cost in
producing a full-resolution sensor for all three colors, but also
due to the substantial difficulty involved in perfectly matching
the corresponding pixels and aligning the three color planes
together. For these reasons, most digital cameras use a color
filter array (CFA) to sample real-world scenes.

A color filter array consists of an array of color sensors,
each of which captures the corresponding color of the real-
world scene at an appropriate pixel location. Some examples
of CFA patterns are shown in Fig. 1(b). The Bayer pattern
(shown in left corner of Fig. 1(b)) is one of the most popular
CFA patterns. It uses a rectangular lattice for the red and
blue components of light and a diagonal lattice for the green
color. The sensors are aligned on a square grid with the green
color repeated twice compared to the corresponding red and
blue sensors. The higher rate of sampling for the green color
component enables to better capture the luminance component
of light and thus provides better picture quality [23]. After
CFA sampling, the remaining pixels are interpolated using
the sampled data. Color interpolation (or demosaicking) is an
important step to produce an output image with full resolution
for all three color components [22] [24]. After interpolation,
the three images corresponding to the red, green and the
blue components go though a post-processing stage. In this
stage, different types of operations such as white balancing,
color correction, color matrixing, gamma correction, bit-depth
reduction, and compression may be performed to enhance the
overall picture quality and to reduce storage space.

To facilitate discussions, let S be the real-world scene to be
captured by the camera and let p be the CFA pattern matrix.
S(i, j, c) can be represented as a 3-D array of pixel values

2New digital cameras employing Foveon X3 sensor, such as Sigma SD9
and Polaroid x530, capture all the three colors at each pixel location [39].

of size H × W × C, where H and W represent the height
and the width of the image, respectively, and C = 3 denotes
the number of color components (red, green, and blue). The
CFA sampling converts the real-world scene S into a three
dimensional matrix Sp of the form

Sp(i, j, c) =
{

S(i, j, c) if p(i, j) = c,
0 otherwise. (1)

After the data obtained from the CFA is recorded, the in-
termediate pixel values (corresponding to the points where
Sp(i, j, c) = 0 in Eqn. (1)) are interpolated using its neigh-
boring pixel values to obtain S

(I)
p .

Fig. 1. (a) Image Capturing Model in Digital Cameras; (b) Sample Color
Filter Arrays.

The performance of color interpolation directly affects the
quality of the image captured by a camera [23]–[25]. There
have been several algorithms for color interpolation. These
algorithms can be broadly classified into two categories,
namely, non-adaptive and adaptive algorithms. Non-adaptive
algorithms apply the same principle for interpolation for all
pixels in a group. Some typical examples of non-adaptive
algorithms include the nearest neighbor, bilinear, bicubic,
and smooth hue interpolations [24]. Traditionally, the bilinear
and bicubic interpolation algorithms are popular due to their
simplicity and ease in hardware implementation. However,
these methods are known to produce visual artifacts in the
final image, causing significant blurring along edge regions
due to averaging across edges. More computationally intensive
adaptive algorithms employing edge directed interpolation,
such as the gradient based [26] and the adaptive color plane
interpolation [27], have been proposed to reduce the blurring
artifacts. The details of several popular interpolation methods
are reviewed in Appendix I. The CFA interpolated image
goes through post-processing stage to produce the final output
image.

The problem of component forensics deals with a method-
ology and a systematic procedure to find the algorithms and
parameters employed in the various components inside the
device. In this work, we consider the problem of non-intrusive
forensic analysis where we use sample images obtained from
a digital camera under diverse and uncontrolled scene settings
to determine the algorithms (and its parameters) employed
in internal processing blocks. In particular, given an output
image Sd, we focus on finding the color filter array pattern and
the color interpolation algorithms, and show that the forensic
analysis results of these components can be used as a first step
in reverse engineering the making of a digital camera. In the
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subsequent sections, we describe our proposed methodology
and algorithms, and demonstrate them with detailed simulation
results and case studies.

IV. FORENSIC ANALYSIS AND PARAMETER ESTIMATION
OF CAMERA COMPONENTS

In this section, we develop a robust and non-intrusive algo-
rithm to jointly estimate the CFA pattern and the interpolation
coefficients by using only the output images from cameras.
Our algorithm estimates the color interpolation coefficients
in each local region through texture classification and linear
approximation, and finds the CFA pattern that minimizes the
interpolation errors [28].

More specifically, we establish a search space of CFA
patterns based on common practice in digital camera design.
We observe that most commercial cameras use a RGB type of
CFA with a fixed periodicity of 2× 2 that can be represented
as

C1 C2 . . .
C3 C4 . . .
...

...
. . .

where Ci ∈ {R, G,B} is the color of the corresponding sensor
at a particular pixel location. In typical digital cameras, each of
the three types of color sensors (R, G, and B) appears at least
once in a 2×2 cell, resulting in a total of 36 possible patterns in
the search space, denoted by P . For every CFA pattern p in the
search space P , we estimate the interpolation coefficients in
different types of texture regions of the image by fitting linear
filtering models. These coefficients are then used to re-estimate
the output image Ŝ

(p)
d , and find the interpolation error (Ŝ(p)

d −
Sd). We now present the details of the proposed algorithm.

A. Texture Classification and Linear Approximation

We approximate the color interpolation to be linear in cho-
sen regions of the image [29]. More specifically, we divide the
image into three kinds of regions based on the gradient features
in a local neighborhood. Defining Ii,j = Sd(i, j, p(i, j)), the
horizontal and vertical gradients at the location (i, j) can be
found using

Hi,j = |Ii,j−2 + Ii,j+2 − 2Ii,j |, (2)

Vi,j = |Ii−2,j + Ii+2,j − 2Ii,j |. (3)

The image pixel at location (i, j) is classified into one of
the three categories:
• Region <1 contains those parts of the image with a

significant horizontal gradient for which (Hi,j − Vi,j) >
T , where T is a suitably chosen threshold;

• Region <2 contains those parts of the image with a
significant vertical gradient and is defined by the set of
points for which (Vi,j −Hi,j) > T ; and

• Region <3 includes the remaining parts of the image
which are mostly smooth.

Using the final camera output Sd and the assumed sample
pattern p, we identify the set of locations in each color
of Sd that are acquired directly from the sensor array. We

approximate the remaining pixels to be interpolated with a set
of linear equations in terms of the colors of the pixels captured
directly. In this process, we obtain nine sets of linear equations
corresponding to the three types of regions <m(m = 1, 2, 3)
and three color channels (R, G, B) of the image.

Let the set of Ne equations with Nu unknowns for a
particular region and color channel be represented as Ax =
b, where A of dimension Ne×Nu and b of dimension Ne×1
specify the values of the pixels captured directly and those
interpolated, respectively, and x of dimension Nu × 1 stands
for the interpolation coefficients to be estimated. To cope
with possible noisy pixel values in A and b due to other
in-camera operations following interpolation (such as JPEG
compression), we employ singular value decomposition [30] to
estimate the interpolation coefficients. Let A0 and b0 represent
the ideal values of A and b in the absence of noise, and the
errors in A and b be denoted by E and r, respectively, so that

A = A0 − E, b = b0 − r,

The values of x are found by solving the minimization problem

min
E,r

||[E r]||F ,

subject to the constraint that A0x − b0 = 0, equivalently
written as

[A + E, b + r]
[

x
−1

]
= 0. (4)

Here ||.||F denotes the Forbenius norm of the matrix so that

||[E r]||F =

(
Ne∑

m=1

Nu∑
n=1

|e(m,n)|2 +
Ne∑

m=1

|r(m)|2
)1/2

. (5)

The solution to the minimization problem can be written as
[

x
−1

]
= − 1

vNu+1,Nu+1
vNu+1, (6)

where vNu+1 represents the (Nu + 1)th right singular vector
of the combined matrix [A b].

B. Finding the Interpolation Error and the CFA Sampling
Pattern

Once we find the interpolation coefficients in each region,
we use them to re-interpolate the sampled CFA output in
the corresponding regions <m, to obtain an estimate of the
final output image Ŝ

(p)
d . Here, the superscript p is used to

denote that the output estimate is based on the choice of the
CFA pattern p. The difference between the estimated final
output and the actual camera output image is the pixel-wise
difference, e(p) = Ŝ

(p)
d − Sd. The interpolation error matrix

e(p) of dimension H ×W × C is obtained for all candidate
search patterns p ∈ P . Denoting the interpolation error in the
red color component as e(p)(., ., 1) and so on, the final error is
computed by a weighted sum of the errors of the three color
channels:

ε(p) = wR ||e(p)(., ., 1)||2F + wG ||e(p)(., ., 2)||2F
+wB ||e(p)(., ., 3)||2F , (7)
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The pattern p̂ = arg minp∈P ε(p) that gives the lowest
overall absolute value of the weighted error is chosen as the
estimated pattern. The constants wR, wG, and wB denote the
corresponding weights used for the three color components
(red, green, and blue), and their values are based on the relative
significance of the magnitude of errors in the three colors. In
our experiments, we choose wR = wB = 1 and wG = 2 to
give more importance to the error in the green channel as it
provides more information about the luminance values of the
pixel [23]. The interpolation coefficients corresponding to the
estimated CFA pattern p̂ for all three types of regions and the
three color channels are also obtained in this process. These
coefficients can then be directly used to obtain the parameters
of the components in the imaging model, as will be shown
later in Section V-B. They can be processed to obtain further
forensic evidence, and will be demonstrated by several case
studies in Section VI.

C. Reducing the Search Space for CFA Patterns

The search space for the CFA patterns can be reduced
using a hierarchial approach. As an example, we synthetically
generate a 512 × 512 image, sample it on the Bayer pattern,
and interpolate using the bicubic method. In Fig. 2, we show
the detection statistics ds(p) given by

ds(p) =
ε(p)

H ×W × (wR + wG + wB)
, (8)

and sorted in ascending order for the 36 different CFA patterns.
In this case, the Bayer pattern gave the lowest interpolation
error and was correctly identified. A closer look on the
results in Fig. 2 reveals that the detection statistics form
three separate clusters, with some values close to 0, some
around 0.3−0.4, and others close to 0.7. Similar trend is also
observed for real camera data and other synthetically generated
images sampled on different CFA patterns and interpolated
with the six representative interpolation techniques reviewed in
Appendix I. This observation forms the basis for the proposed
heuristic to reduce the search space of the CFA patterns.

Fig. 3 shows sample patterns from these three clusters.
Cluster 1 includes all 2× 2 patterns that have the same color
along diagonal directions (either along the main diagonal or
off-diagonal), chosen among the three colors (red, green, or
blue). The remaining two spots can be filled in two different
ways, giving a total of 12 such patterns in the first cluster.
Cluster 2 and cluster 3 consists of patterns that have the same
color along the horizontally (or vertically) adjacent blocks of
the 2×2 grid. Cluster 2 has either red or blue color repeated to
produce a total of 16 possible patterns. The remaining eight
patterns with green appearing twice form cluster 3. In this
example, the Bayer pattern is the actual color filter array and
the patterns from first cluster give lower errors compared to
the other clusters. The patterns from the third cluster gives
the highest error values because the error in the green color
channel is penalized more with the weight assignment wG = 2
and wR = wB = 1 in Eqn. (7).

Such clustering of patterns into three groups helps us
develop a heuristic to reduce the search space. We first divide

Fig. 2. Sorted detection statistics in terms of normalized overall error for
different candidate search patterns

Fig. 3. Sample CFA patterns from the three clusters

the 36 patterns into three groups and choose one representative
pattern from each of the three classes. The interpolation error
is then estimated for these representative patterns to find the
category that the actual CFA pattern is most likely to belong.
Finally, a full search is performed on the chosen category to
find the pattern with the lowest interpolation error. The number
of searches required to find the optimal solution can be reduced
to around 10. If additional information about the patterns are
available, it may be used to further reduce the search space.
For instance, a forensic analyst may choose to test only on
those CFA patterns that have 2 green color components if
he/she has such prior knowledge about the visual sensor.

D. Evaluating Confidence in Component Parameter Estima-
tion

In addition to identifying the parameters of the internal
building blocks of the camera, it is also important to know the
confidence level on the estimation result. A higher confidence
value in estimation would increase the trustworthiness of the
decision made by a forensic analyst.

We propose an entropy based metric to quantify the confi-
dence level on the estimation result. Given a test image, we
estimate its interpolation coefficients and provide it as an input
to a c−class SVM classifier, trained on the coefficients of
the c candidate interpolation methods. The probability that a
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given test sample comes from the ith class, qi, is estimated
from the soft decision values using the probabilistic SVM
framework [31], and the test data point is classified into class
k if qk is larger than the other probabilities. Some details
of the probabilistic SVMs are included in Appendix II for
readers’ reference. The confidence score η on the decision is
then defined as

η = 2Υ


1−

∑c
i=1 qi log2

(
1
qi

)

log2 c


 . (9)

where Υ(y) = z is defined as the inverse binary entropy
function such that y = −z log2(z) − (1 − z) log2(1 − z) for
0 ≤ z ≤ 1

2 . The argument to the Υ function measures the
entropy difference between the distribution {qi} and a discrete
uniform distribution, and the final value of η is normalized to
the range of [0, 1] to represent a probability.

To verify that the proposed metric η can reflect the con-
fidence level, we examine two extreme cases. When q =
[1, 0, 0, . . . , 0], the decision of choosing the first class is
made with a very high confidence and η = 1. And when
q = [ 1c + ε, 1−ε

c , 1−ε
c , . . . , 1−ε

c ] where ε is a small positive
real number, there is an almost equal probability that the given
data sample comes from any of the c classes. In this case,
the decision is made with a very low confidence and η also
approaches zero. For other values of q between these two
extreme cases, the value of η would lie in the interval [0, 1],
with a higher value indicating more confidence in the decision.

V. EXPERIMENTAL RESULTS

A. Simulation Results with Synthetic Data
We use synthetic data constructed from 20 representative

images to study the performance of the proposed techniques.
The original images are first downsampled to remove the effect
of previously applied filtering and interpolation operations.
They are then sampled on the three different CFA patterns
as shown in Fig. 1(b). Each of the sampled images are inter-
polated using one of the six interpolation methods reviewed
in Appendix I, namely, (1) Bilinear, (2) Bicubic, (3) Smooth
Hue, (4) Median Filter, (5) Gradient based, and (6) Adaptive
Color Plane. Thus, our total dataset contains 20×3×6 = 360
images, each of size 512× 512.

1) Simulation Results under no Post-processing: We test
the proposed CFA pattern and color interpolation identification
algorithms on this synthetic data set. In the noiseless case
with no post-processing, we observe no errors in estimating
the CFA pattern. We use a 7×7 neighborhood to estimate the
interpolation coefficients for the three color components in
the three types of texture regions, and pass it to a classifier to
identify the interpolation algorithm. A support vector machine
(SVM) [32] [33] classifier with a third-degree polynomial
kernel is used to identify the interpolation method. We ran-
domly choose 8 images (out of the 20) from each of the six
interpolation techniques as ground truth for training and the
remaining 12 images for testing. We repeat the experiment 500
times with a different set of images each time. The classifier
is 100% accurate in identifying the correct color interpolation
algorithm without any errors.

2) Simulation Results with Post-processing: As mentioned
earlier, post-processing such as color correction and compres-
sion are commonly done in nearly all commercial cameras.
Therefore, to derive useful forensic evidence from output
images, it is very important that the proposed methods be
robust to the common post-processing operations done in
cameras.

Such post processing operations as color correction and
white-balancing are typically multiplicative, where the final
image is obtained by multiplying the color interpolated image
by an appropriately chosen constant. The multiplicative factor
depends on the camera type, lighting conditions, and chosen
camera software options. These would not affect our solution
to the linear equation sets since the same factor would be
applied to both sides of the equations. In this work, we
primarily focus on JPEG compression and additive noise,
and study the performance under these distortions. Other
post-processing operations such as gamma correction can
be estimated from the final output images [12] and can be
undone before computing the interpolation coefficients. For
the results presented in this sub-section, we directly obtain
the coefficients from the output images and do not perform
inverse gamma correction based on the estimated values of
gamma. Later in Section V-B, we show that the estimation
results are robust to gamma correction distortions.

(i) Performance Results Under JPEG compression: JPEG
compression is an important post-processing operation that
is done in cameras. The noise introduced by compression
could potentially result in errors in estimating the color
interpolation coefficients and the CFA pattern. We test the
proposed CFA pattern identification algorithm with the syn-
thetic data obtained under different JPEG quality factors
{20, 30, . . . , 80, 90, 99}. We observe that in all cases, the
estimator gives very good results and the correct CFA pattern
is always identified.

Next, we study the accuracy in identifying the color inter-
polation when the synthetically generated images are JPEG
compressed. Here, we consider two possible scenarios. In
the first case, a forensic analyst does not have access to the
camera(s) and therefore does not have control over the input(s)
to the device. He/she makes a judgement based on the forensic
evidence obtained from the images submitted for trial. In
this scenario, the pictures obtained with different interpolation
methods would correspond to different scenes, which we
shall call as the multiple-scene case. The performance of the
proposed color interpolation identification methodology for
the multiple-scene case at different JPEG quality factors is
shown in Fig. 4(a). Here we use a total of 12 images (two
images for each of the six interpolation methods) for training,
and test with the remaining 8 images under each interpolation
(8 × 6 = 48 in total). The experiment is repeated 500 times
by choosing a random training set each time. We observe that
the average percentage of images for which the interpolation
technique is correctly identified is around 95 − 100% for
moderate to high JPEG quality factors (80 − 100) and the
average performance reduces to 80− 85% for quality factors
from 50− 80.
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Fig. 4. Fraction of images for which the color interpolation technique is correctly identified under different JPEG compression quality factors. Testing results
for synthetic data.
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Fig. 5. Fraction of images for which the color interpolation technique is correctly identified under different noise PSNR’s. Testing results for synthetic data.

Alternatively, if a forensic analyst has access to the camera,
he/she can do controlled testing by choosing the input to the
cameras so as to reduce the impact of the input’s variation
on the forensic analysis. In this scenario, the analyst may
consider taking similar images with all the cameras under
study, in order to improve the estimation accuracy, and to
increase the confidence level on his/her final judgement. We
call this situation the single-scene case. The single-scene
case corresponds to the semi non-intrusive forensic analysis
discussed earlier in Section I. The performance of the proposed
color interpolation technique for this case for different JPEG
quality factors is shown in Fig. 4(b). Here we use 8 images
under the six interpolation techniques for training (48 in total)
and the 72 remaining images for testing. We observe that
for most JPEG quality factors, the average percentage of
images for which the color interpolation technique is correctly
identified is around 96% and thus the forensic decision can
be made with a higher confidence compared to the multiple-
scene case. The accuracy can be further improved using larger
percentage of images while training. This suggests that with
an increasing number of well-designed inputs to the system,

the detection performance can be much enhanced.

(ii) Performance Results Under Additive Noise: Additive
noise can be used to model other kinds of random post-
processing operations that may occur during the scene capture
process. In order to study the noise resilience of a forensics
system, we test the proposed CFA pattern identification algo-
rithm with the images obtained under different noise levels
with peak-signal to noise ratios (PSNR) of 15, 20, 30, and 40
dB, respectively. In almost all cases, we correctly identified the
actual CFA pattern. We obtained only one error in estimation,
when the PSNR was extremely low at 15dB and the adaptive
color plane interpolation method was used. However, in this
case, the correct pattern came in the top three choices.

We then study the identification performance of the color in-
terpolation method under additive noise. The performance for
synthetic data, averaged over 500 iterations, for the multiple-
scene and the single-scene case are shown in Fig. 5(a) and
Fig. 5(b), respectively. We observe that there is around 90%
accuracy for the multiple-scene case and it increases to around
95% for the single-scene scenario.
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TABLE I
CAMERA MODELS USED IN SIMULATION, ORDER BY CAMERA MAKE

No. Camera Model No. Camera Model
1 Canon Powershot A75 11 Olympus C3100Z/C3020Z
2 Canon Powershot S400 12 Olympus C765UZ
3 Canon Powershot S410 13 Minolta DiMage S304
4 Canon Powershot S1 IS 14 Minolta DiMage F100
5 Canon Powershot G6 15 Casio QV 2000UX
6 Canon EOS Digital Rebel 16 FujiFilm Finepix S3000
7 Nikon E4300 17 FujiFilm Finepix A500
8 Nikon E5400 18 Kodak CX6330
9 Sony Cybershot 19 Epson PhotoPC 650
10 Sony DSC P72

Fig. 6. Super CCD sensor pattern

B. Results on Camera Data

For our study, we consider 19 different cameras as shown in
Table I. Around 40 different images are taken from each cam-
era. To make it closer to the real-world scenario, the images
are captured under completely random conditions−different
sceneries, different lighting situations, and compressed under
JPEG quality factors as specified by default values used in each
camera. The default camera settings (prescribed image size,
color correction, auto white balancing, JPEG compression,
etc) are used in data acquisition. From each of these camera
images, we randomly choose five different non-overlapping
512×512 blocks per image and use it for subsequent analysis.
Thus, our database consists of a total of 3800 different 512×
512 pictures with 200 samples for each of the 19 cameras.

Note that all the cameras in our database use RGB type
of CFA pattern with red, green, and blue sensors. The search
space for CFA in our experiments focusses on such CFA type,
since it has been widely employed in digital camera design
and most cameras currently in the market use a variation of
this pattern. There are a few exceptions in CFA designs, for
example, some models use CMYG type of CFA that captures
the cyan, magenta, yellow, and green components of light [24].
The proposed algorithms can be extended to identify CMYG
type CFA patterns by including appropriate patterns in the
search space.

Among RGB type CFA patterns, several layouts of the
three types of color filters have been used in practice. The
2×2 square arrangement is the most popular and most digital
cameras utilize a shifted variation of the Bayer pattern to
capture the real world scene. Recently introduced super CCD
cameras [34] have sensors placed as shown in Fig. 6. To test
the performance of the proposed algorithms to such cameras,
we include images from Fujifilm Finepix A500 (camera no.
17) that uses super CCD [34] in our database.

As an initial step, we try to estimate the CFA pattern from
the output images using the algorithm described in Section IV.
We observe with a high confidence that all the cameras except

Fig. 7. Sample CFA patterns for (a) Canon EOS Digital Rebel, and (b)
Fujifilm Finepix S3000.

Fig. 8. Interpolation coefficients for the green channel for one sample
image taken with the Canon Powershot A75 camera for (a) Region <1

with significant horizontal gradient, (b) Region <2 with significant vertical
gradient, (c) Smooth region <3, (d) Coefficients of bicubic interpolation.

Fujifilm Finepix A500 (camera no. 17) use shifted versions of
the Bayer color filter array as their CFA pattern. For instance,
we apply our CFA estimation algorithm on JPEG images from
Canon EOS Digital Rebel (camera no. 6) and the Fujifilm
Finepix S3000 (camera no. 16); and the estimated 2× 2 CFA
that minimized the fitting errors is shown in Fig. 7(a) and
(b), respectively. The estimation results perfectly match these
cameras’ ground-truth data obtained by reading the headers of
the raw images produced by the two cameras.

When testing the images from Fujifilm Finepix A500 (cam-
era no. 17) with the same 36 square patterns in the CFA
pattern search space, we notice that the best 2 × 2 pattern
in the search space is still a shifted version of the Bayer
pattern. However, in this case, we observe that the minimum
value of the error ε (as given by Eqn. (7)) is larger than
the ones obtained from other square CFA cameras. Therefore,
the overall confidence in decision making is lower for this
super CCD camera compared to the other cameras in the
database. Further, we also find that the CFA pattern estimation
results are not consistent across different images taken with
the same camera, i.e., different images from Fujifilm Finepix
A500 give different shifted versions of the Bayer pattern as
the estimated CFA. Such inconsistencies in the results along
with lower confidence in parameter estimation could provide
forensic evidence to indicate that the camera does not employ
a square CFA pattern. One possible approach to identify super
CCD is to enlarge the CFA search space to include these
patterns. We plan to further investigate this aspect in our future
work to gather forensic evidence to distinguish super CCD
cameras and square CFA cameras.

Next, we try to estimate the color interpolation coefficients
in different image regions using the algorithm presented in
Section IV-B. In our simulations, we find the coefficients of
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a 7 × 7 filter in each type of region, and color channel, thus
giving a total of 7× 7× 3× 3 = 441 coefficients per image.
Sample coefficients obtained using the Canon Powershot A75
camera for the three types of regions in the green image
are shown in Fig. 8. For region <1 that corresponds to
areas having significant horizontal gradient, we observe that
the value of the coefficients in the vertical direction are
significantly higher than those in the horizontal directions. This
indicates that the interpolation is done along the edge, which
in this case is oriented along the horizontal direction. Similar
corresponding inferences can be made from coefficients in
region <2 of significant vertical gradient. Compared to these
two regions, the coefficients in region <3 have almost equal
values in all four directions, and do not have any directional
properties. Moreover, careful observation of the coefficients
in region <3 reveals their close resemblance to the bicubic
interpolation coefficients shown in Fig. 8(d). This suggests that
it is very much likely that the Canon Powershot A75 camera
uses bicubic interpolation for smooth regions of the image.
Similar results obtained for other camera models indicate
with η = 96% confidence that all cameras use the bicubic
interpolation for handling smooth regions. This is consistent
with common knowledge in image processing practice that
bicubic interpolation is good for regions with slowly changing
intensity values. [35].

VI. CASE STUDIES AND APPLICATIONS OF
NON-INTRUSIVE FORENSIC ANALYSIS

In this section, we present case studies to illustrate the
applications of the proposed non-intrusive forensic analysis
methodology for camera identification (acquisition forensics),
and for providing clues to identify infringement/licensing.

A. Identifying Camera Brand from Output Images

The color interpolation coefficients estimated from the im-
age can be used as features to identify the camera brand
utilized to capture the digital image. As shown in Section V-B,
most cameras employ similar kinds of interpolation techniques
for smooth regions. Therefore, we use the coefficients obtained
from the significant horizontal edge regions <1 and and
vertical edge regions <2 as features to construct a camera
brand identifier.

To obtain more reliable forensic evidence from the input im-
age for camera identification, we first pre-process the image by
edge detection, to locate five significant 512×512 blocks with
the highest absolute sum of gradient values. The interpolation
coefficients corresponding to the regions <1 and <2, from all
three color channels, estimated from these 512 × 512 blocks
are used as features for identification.

We use a classification based framework to identify the
camera brand. For each camera in the database, we collect
40 different images and obtain 200 different 512× 512 image
blocks by locating the top five regions with higher gradient
values. These 200 image blocks collected from each of the
19 cameras are grouped so that all images from the same
brand form one class. An 9−camera brand SVM classifier

with a polynomial kernel function [33] is constructed with
a randomly chosen 50% of the images from each class
for training. The remaining images are used in testing and
the process is repeated 500 times by randomly choosing a
training set each time. Table II shows the average confusion
matrix, where the (i, j)th element gives the percentage of
images from camera brand−i that are classified to belong to
camera brand−j. The main diagonal elements represent the
classification accuracy and achieve a high average value of
90% for nine camera brands.

The above results have demonstrated the effectiveness of
the color interpolation component as features to differentiate
different camera brands. The robustness of estimating these
features under JPEG and additive noise has been shown earlier
in Section V-A.2. Here we further examine the robustness
against such nonlinear point operations as gamma correction.
As a common practice in digital camera design, most cameras
perform gamma correction with a γ = 1/2.2 to match the
luminance of the digital image with that of the display monitor.
In order to test the goodness of the proposed algorithms for
gamma correction, we first do inverse gamma correction with
γ = 2.2 on the original camera images 3. The interpolation
coefficients are then estimated from these gamma corrected
images and used in camera brand identification. In this case,
the confusion matrices are similar to the ones in Table II, and
average identification accuracy was estimated to be 89%. This
suggests that the camera identification results are invariant to
gamma correction in digital cameras.

Some exploration on the problem of camera brand identifi-
cation were made recently in [20] [21]. In these works, the au-
thors test their algorithms with pictures taken under controlled
conditions with the same scene captured with multiple cameras
(corresponding to the single-scene case discussed earlier in
Section V-A) and the best performance reported is 84% on
only three brands [21]. Further, the performance of the null-
based features employed in [21] is considerably dependent on
the image content, and sensitive to other in-camera processing
such as compression. Compared to these prior approaches, the
interpolation coefficients derived in our work by exploring the
spatial filtering relations are less dependent on input scenes
and are robust against various common in-camera processing.
The formulation of minimizing noise norm helps resist noise
and other in-camera processing. As a result, the features
coming from the proposed component forensics methodologies
are able to achieve a higher classification accuracy over a much
larger database with 19 camera models from nine different
brands. Further, the proposed component forensic techniques
are more generic with the goal of identifying the algorithms
and parameters employed in various components in digital
cameras, and are not restricted to camera brand identification.

3In a general scenario, the value of γ can be estimated from the output
images and the corresponding inverse could be applied before estimating the
interpolation coefficients.
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TABLE II
CONFUSION MATRIX FOR IDENTIFYING DIFFERENT CAMERA BRANDS (* DENOTES VALUES SMALLER THAN 4%)

Canon Nikon Sony Olympus Minolta Casio Fuji Kodak Epson
Canon 96% * * * * * * * *
Nikon * 83% 5% * * * * * *
Sony * * 90% * * * * * *
Olympus * * * 93% * * * * *
Minolta 8% * * * 81% * * * *
Casio * * * 6% * 89% * * *
Fuji * * * * 7% * 87% * *
Kodak * * * * * * * 89% *
Epson * * * * * * * * 100%

B. Identifying Camera Model from Output Images

Our results in the previous subsection demonstrate the
robustness in non-intrusively identifying the camera brand
using the color interpolation coefficients as features. In this
subsection, we extend our studies to answer further forensic
questions to find the exact camera model used to capture
the given digital image, and examine the performance in
identifying the camera model.

We use 200 images from each of the 19 cameras in our
experiments. A randomly chosen 125 images are used for
training and the remaining are for testing with a 19−camera
model SVM classifier. The results of the simulation are shown
in Table III in terms of the average confusion matrix. The
(i, j)th element in the confusion matrix gives the fraction of
images from camera model−i classified as camera model −j.
In order to highlight the significant values of the table, we
show only those set of values that are greater than or equal
to a chosen threshold λ = 1/Nc, where Nc is the number
of cameras (λ = 1/19 in our experiments). The average
classification accuracy is 86% for 19 camera models.

The classification results reveal some similarity among
different camera models in handling interpolation, as there
are some off-diagonal elements that have a non-zero value
greater than the threshold of 1/19. For example, among the
Canon Powershot S410 (camera no. 3) images, 20% were
classified as belonging to Canon Powershot S400 (camera
no. 2). A similar trend is also observed for images from
Canon Powershot G6 (camera no. 5) and Canon EOS Digital
REBEL (camera no. 6). These results indicate that the color
interpolation coefficients are quite similar among the Canon
models and hence it is likely that they are using similar kinds
of interpolation methods.

C. Similarities in Camera Color Interpolation Algorithms

Motivated by the results in the previous subsection, we
further analyze the similarity between the camera models in
this subsection, and propose metrics to quantitatively evaluate
the closeness among interpolation coefficients from several
cameras.

1) Studying Similarities in Cameras using Leave-One-Out:
We perform additional experiments to identify the camera
models with similar color interpolation by a leave-one-out
procedure. More specifically, we train the classifier by omitting
the data from one of the camera models and test it with
these coefficients, to find the nearest neighbor in the color

interpolation coefficient space. For instance, when we train
the SVM using all the 200 images from 18 cameras except
Canon Powershot S410 (Camera no. 3), and then test it using
the 200 images from Canon Powershot S410, we observe that
66% of the Canon Powershot S410 images are classified as
Canon Powershot S400. Furthermore, out of the remaining
images, 28% of the pictures are classified among one of the
remaining Canon models. The reverse trend is also observed
when we train with all the images except Canon Powershot
S400 (camera no. 2) and use these images for testing. In this
case, we notice that around 45% of the Canon Powershot
S400 pictures are classified as Canon Powershot S410, 19%
are categorized as Canon Powershot A75, and 15% of the
remaining guessed as some other Canon model. This result
suggests that there is a considerable amount of similarity in
the kind of interpolation algorithms used by various Canon
models.

Similar trend is also observed for the two Sony cameras in
our database. We note that around 66% of the Sony Cybershot
model are classified as Sony DSC P72 model when the former
was not used in training. These results indicate the similarities
in the kind of interpolation algorithm among various models
of the same brand. Interestingly, we also observe similarity
between Minolta DiMage S304 and Nikon E4300. Around
53% of the Minolta DiMage S304 pictures are designated
as Nikon E4300 camera model. This indicates a closeness
between the interpolation coefficients in the feature space.

2) Quantifying Similarity in Color Interpolation with a
Divergence Score: From our preliminary analysis in V-B, we
observe that the majority of the cameras use similar kinds
of interpolation techniques in handling smooth regions. As a
next step, we perform studies to investigate and obtain forensic
evidence on the type of interpolation used by a camera in the
non-smooth regions.

We extend our interpolation coefficient estimation model
in Section IV-B to explicitly target at non-smooth regions in
the image. To do so, we divide the image into eight regions
depending on the relative gradient estimates in eight directions
(namely north, east, west, south, north-east, north-west, south-
east and south-west). The gradient values in this case are
obtained as in the threshold-based variable number of gradients
(VNG) algorithm [36]. In this case, the gradient in the north
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TABLE III
CONFUSION MATRIX FOR ALL CAMERAS. THE MATRIX IS DIVIDED BASED ON DIFFERENT CAMERA MAKES. THE VALUES BELOW THE THRESHOLD

λ = 1
19

ARE DENOTED BY ∗. THE CAMERA INDEX NUMBERS ARE ACCORDING TO TABLE I.

TABLE IV
DIVERGENCE SCORES FOR DIFFERENT CAMERA MODELS. THE VALUES BELOW 0.04 ARE SHADED, AND THE ∗ INDICATES ZERO SIMILARITIES

BETWEEN THE SAME CAMERA MODELS BY DEFINITION. THE CAMERA INDEX NUMBERS ARE ACCORDING TO TABLE I.

direction JN is obtained using

JN (x, y) = |Y (x− 1, y)− Y (x + 1, y)|
+ |Y (x− 2, y)− Y (x, y)|
+ 0.5× |Y (x− 1, y − 1)− Y (x + 1, y − 1)|
+ 0.5× |Y (x− 1, y + 1)− Y (x + 1, y + 1)|
+ 0.5× |Y (x− 2, y − 1)− Y (x, y − 1)|
+ 0.5× |Y (x− 2, y + 1)− Y (x, y + 1)|. (10)

where the image Y is defined as in Eqn. (20) in Appendix
I. Similar expressions for gradients in the remaining seven
directions are used to find the local gradient values [36]. Once
these gradients are obtained, they are compared to a threshold
to divide the image into eight texture regions. The interpolation
coefficients are obtained in each region by solving a set of
linear equations as given by Eqn. (6).

We use a classification based methodology to study the
similarities in interpolation algorithms used by different cam-
eras. To construct classifiers, we start with 100 representative

images, downsample them (by a factor of 2) and then re-
interpolate with each of the six different interpolation methods
as discussed in Section V-A. With a total of 600 images
synthetically generated in this way, we run the color inter-
polation estimator to find the coefficients for each image.
The estimated coefficients are then used to train a 6-class
SVM classifier, where each class represents one interpolation
method. After training the SVM classifier, we use it to test
the images taken by the 19 cameras. For each of the 2000
images taken by every camera in the 19-camera dataset, we
estimate the CFA parameters (eight sets of coefficients each
with a dimension of 5 × 5), feed them as input to the above
classifier and record the classification results. Probabilistic
SVM framework is used in classification and the soft decision
values are recorded for each image [31] (refer to Appendix II
for more details). If the two camera models employ different
interpolation methods (not necessarily the same as the six
typical methods in the classifier), then the classification results
are likely to be quite different, and their differences can be
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quantified by an appropriate distance between the classification
results.

More specifically, for each image in the database, the inter-
polation coefficients are found and fed into the N -class clas-
sifier, where N denotes the number of possible choices of the
interpolation algorithms studied (N = 6 in our experiments).
Let the output of the classifier be denoted as a probability
vector g = [g1, g2, . . . , gN ], where gi gives the probability
that the input image employs the interpolation algorithm−k.
Similar probability vectors are obtained for every image in the
database and the average performance is computed for each
camera model. Let the average classification results for camera
model−i be represented by the vector πi = [πi1, πi2, . . . , πiN ],
where πik is the average probability for an image from
camera model−i to be classified as using the interpolation
algorithm−k. The πik’s are estimated using soft decision
values obtained using the probabilistic SVM framework. The
similarities of the interpolation algorithms used by any two
cameras (with indices i and j) can now be measured in terms
of a divergence score−ϕij defined as symmetric Kullback-
Leibler (KL) distance between the two probability distributions
πi and πj :

ϕij = D(πi||πj) + D(πj ||πi), (11)

where D(πi||πj) =
N∑

k=1

πik log2

(
πik

πjk

)
. (12)

The symmetric KL distance is obtained in each of the eight
types of regions separately by training with synthetic data and
testing with the camera images using the appropriately chosen
coefficients as features. The overall divergence score is ob-
tained by taking the mean of the individual divergence scores
in eight regions and three color components. A low value of
overall divergence score indicates that the two cameras are
similar and are likely to use very similar kind of interpolation
methods.

The divergence scores of the 19 different camera models
are shown in Table IV. Here, the (i, j)th element in the
matrix represents the average symmetric KL distance between
the interpolation coefficients of camera model−i and camera
model−j. Divergence scores below a threshold of 0.06 have
been highlighted for reference. We observe from the table that
most cameras from the same brand seem to use similar kinds
of interpolation algorithms. This is especially evident for the
some models of Canon and Minolta used in our analysis.

The divergence score between the two Canon models, S400
and S410, are very low, suggesting that both of these models
are likely to use similar techniques for color interpolation.
We also observe similarities between the two Minolta models,
DiMage S301 and DiMage F100, and between the two Sony
models, Cybershot and DSC P72. The metric is very close to
zero in all these cases, thus indicating that cameras from the
same manufacturer have similar interpolation. Interestingly, we
also observe some similarity between several cameras from
different manufactures. As shown in Table IV, the divergence
score between Nikon model E4300 (camera no. 7) and the
Minolta DiMage S304 (camera no. 13) is low, which suggests

Fig. 9. The Proposed Forensic Analysis Methodlogy

a resemblance in the type of interpolation used by these two
cameras.

The work that we have presented so far quantifies the
similarity of camera models based on the estimated color
interpolation coefficients. The parameters of the other stages
in the scene capture model, such as white balancing and JPEG
compression, may be further used to study similarities among
different camera models and brands. In such cases, the forensic
information collected from various components may also be
fused together to provide quantitative evidence to identify and
analyze technology infringement/licensing of cameras.

VII. GENERAL COMPONENT FORENSICS METHODOLOGY

In this section, we extend the proposed non-intrusive foren-
sic analysis to a methodology applicable to a broad range of
devices. Let O1, O2, . . . , ONo be the sample outputs obtained
from the test device that we model as a black box, and
C1, C2, . . . , CNc be the individual components of the black
box. Component forensics provides a set of methods to help
identify the algorithm and parameters used by each of the
processing blocks Cy. A general forensic analysis framework
is composed of the following processing steps as shown in
Fig. 9.

1) Modelling of the Test Device: As the first step of forensic
analysis, a model is constructed for the object under
study. This modeling helps in breaking down the test
device into a set of individual processing components
C1, C2, . . . , CNc and systematically studying the effect
of each of these blocks on the final outputs obtained
with the test object.

2) Feature Extraction: The forensic analyst identifies a set
of features F1, F2, . . . , FNf

that has a good potential
to help identify the algorithms used in yth device
component Cy . These features are based on the final
output data, and are chosen to uniquely represent each of
the algorithms used. For the case of digital cameras, we
have used in this paper the estimated color interpolation
coefficients as features for further analysis. Parameters
of other components, such as white balancing constants



13

and gamma correction values, can also be used as
features.

3) Feature Analysis and Information Fusion: We analyze
the features extraction from the previous stage to obtain
forensic evidence to meet specific applications’ needs.
The appropriate analysis technique depends on the com-
ponent under study, the application scenario, and the
type of evidence desired. The results obtained from each
of the analysis techniques can be combined to provide
useful evidence about the inner working of the device
components.

4) Testing and Validation Process: The validation stage
uses test data with known ground truth to quantify
the accuracy and performance of the forensic analysis
system. It reflects the degree of success of each of the
above processing stages and their combinations. Repre-
sentative synthetic data obtained using the model of the
test object can help provide ground truth to validate the
forensic analysis systems and provide confidence levels
on estimation. The results of this stage can also facilitate
a further refinement of the other stages in the framework.

The methods and techniques adopted in each stage may vary
depending on the device, the nature of the device components,
and the application scenario. Regarding feature extraction, in
some situations, the features by themselves (without further
processing) can prove to be useful forensic evidence, and
they can be used to estimate the parameters of the model.
For instance, the color interpolation coefficients were directly
estimated from the camera output, and used to study the
nature of interpolation in different regions of the image in
Section V-B. Evidence collected from such analysis can be
used to study the similarities and differences in the techniques
employed in the device components across several models
and answer questions related to infringement/licensing and
evolution of digital devices. In some other application scenar-
ios, the component parameters might be an intermediate step
and further processing would be required to answer specific
forensic questions. For example, we have used the estimated
color interpolation coefficients as features to build a robust
camera identifier to determine the camera model (and make)
that was used to capture a given digital image as seen in
Sections VI-A and VI-B.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we consider the problem of component foren-
sics and propose a set of forensic signal processing techniques
to identify the algorithms and parameters employed in indi-
vidual processing modules in digital cameras. The proposed
methodology is non-intrusive and uses only the sample data
obtained from the digital camera to find the camera’s color
array pattern and the color interpolation methods. We show
through detailed simulations that the proposed algorithms are
robust to various kinds of postprocessing that may occur in
the camera. These techniques are then used to gather forensic
evidence on real world data-sets captured with 19 camera
models of nine different brands under diverse situations. The
proposed forensic methodology is used to build a robust

camera classifier to non-intrusively find the camera brand
and model employed to capture a given image for problems
involving image source authentication. Our results indicate that
we can efficiently identify the correct camera brand with an
overall average accuracy of 90% for nine brands. Our analysis
also suggests that there is a considerable degree of similarity
within the cameras of the same brand (e.g. Canon models)
and some level of resemblance among cameras from different
manufacturers. Measures for similarity are defined and elab-
orate case-studies are presented to elucidate the similarities
and differences among several digital cameras. We believe that
such forensic evidence would be great source of information
for technology infringement cases, intellectual property rights
management, and for studying evolution for digital media.

In our future work, we plan to investigate other important
components inside digital cameras, such as white balancing.
For many cameras in the market that do not provide raw
sensor output, the estimation of white balancing algorithm and
parameters will facilitate non-intrusive estimations of the raw
data acquired directly by the sensor prior to the corrective
operations. Comparing the information about the raw sensor
data and the white balanced results will provide valuable
information on the distinct characteristics of the sensor. This
will allow us to push the component forensic capability deeper
into the core of the imaging device.

APPENDIX I: SOME POPULAR COLOR INTERPOLATION
ALGORITHMS

There have been numerous algorithms employed in practice for
Color Filter Array interpolation. In this appendix, we briefly review
some of the popular methods. For a detailed survey, the readers are
referred to [24]. The color interpolation methods can be broadly
classified into two main categories, namely, adaptive and non-adaptive
methods, depending on their adaptability to the image content. While
non-adaptive methods use the same pattern for all pixels in image,
adaptive methods such as gradient based algorithms use the pixel
values of the local neighborhood to find the best set of coefficients
to minimize the overall interpolation error.

Bilinear and Bicubic methods are examples of non-adaptive inter-
polation schemes. In these algorithms, the pixel values are interpo-
lated according to the following equations [22]:

R(x, y) =

NgX
u,v∈−Ng

hr(u, v)R̃(x− u, y − v), (13)

G(x, y) =

NgX
u,v∈−Ng

hg(u, v)G̃(x− u, y − v), (14)

B(x, y) =

NgX
u,v∈−Ng

hb(u, v)B̃(x− u, y − v), (15)

where R̃, G̃ and B̃ are the original values obtained from the sensor
and captured by the appropriate sensors; hr , hg , and hb denote the 2-
D filters of dimension Ng×Ng used in interpolation. For the bilinear
case, these filters are given by

hr = hb =
1

4

24 1 2 1
2 4 2
1 2 1

35 , and hg =
1

4

24 0 1 0
1 4 1
0 1 0

35 .

The corresponding filters for the bicubic case are given by
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The Smooth Hue interpolation algorithm is based on the obser-
vation that the hue varies smoothly in natural images. In this case,
the green channel is interpolated using bilinear interpolation. The red
(and blue) components are obtained by interpolating the ratios R/G
(and B/G) as given by

R(x, y)

G(x, y)
=

1

2

�
R(x, y − 1)

G(x, y − 1)
+

R(x, y + 1)

G(x, y + 1)

�
. (16)

In Median filter based algorithms, the three channels are first
interpolated using bilinear interpolation. Then the differences R−G,
R − B, and G− B, are median filtered to produce Mrg , Mrb, and
Mgb respectively. At each pixel location, the missing color values
are obtained by linearly combining the original color sensor value
and the appropriate median filter result [22]. For example, the green
color component at the location of the red color filter is obtained as

G(x, y) = R(x, y)−Mrg(x, y). (17)

All the methods described above are non-adaptive in nature and
does not depend on the characteristics of particular regions. In
contrast to these techniques, the Gradient Based algorithms are more
complex. Here, the horizontal gradient (Jh) and the vertical gradient
(Jv) at the point (x, y) are first estimated using

Jh(x, y) = |Y (x, y − 2) + Y (x, y + 2)− 2Y (x, y)|, (18)

Jv(x, y) = |Y (x− 2, y) + Y (x + 2, y)− 2Y (x, y)|, (19)

where

Y (x, y) =

8<: R(x, y) if p(x, y) = 1,
G(x, y) if p(x, y) = 2,
B(x, y) if p(x, y) = 3,

(20)

and p is the CFA pattern matrix (e.g. Bayer pattern) with p(x, y) =
1, indicating that if the CFA pattern at the (x, y)th pixel is red,
green, or blue. The edge direction is then estimated from the gradient
values, and the missing pixel values in the green component of the
image are obtained in such a way that the interpolation is done along
the edge and not across the edge, using only pixel values from the
green channel. The missing red (and blue) components are found by
interpolating the difference, R−G (or B −G) along the edge.

Adaptive Color Plane interpolation method is an extension of the
gradient based method. Here, the horizontal and vertical gradients are
estimated using

Jh(x, y) = |Y (x, y − 1)− Y (x, y + 1)|
+ |Y (x, y − 2) + Y (x, y + 2)− 2Y (x, y)|, (21)

Jv(x, y) = |Y (x− 1, y)− Y (x + 1, y)|
+ |Y (x− 2, y) + Y (x + 2, y)− 2Y (x, y)|. (22)

In this case, unlike the gradient based method, the interpolation of
one color component, also uses the other colors and the output is a
linear combination of sampled sensor outputs in the neighborhood
across the three color channels [27].

APPENDIX II: PROBABILISTIC SUPPORT VECTOR
MACHINES

We employ the probabilistic SVM framework proposed in [31]
to find the likelihood qi that a given data sample comes from the
ith class. Let the observation feature vector be denoted as x and
the class label as y where 1 ≤ y ≤ c for a c-class problem.
With the assumption that the class-conditional densities Pr(x|y) are
exponentially distributed [37], the estimate µ̂ij of the pairwise class
probabilities µij , Pr(y = i|y = i or j, x) is found by fitting
a parametric model to the posterior probability density functions
µ̂ij = 1/(1 + exp(Âx + B̂)). The values of Â and B̂ are estimated
by minimizing the Kullback-Leibler distance between the parametric
pdf and the observed pdf obtained from the training samples. We then
find qi , Pr(y = i|x), the probability that the data sample comes
from the ith class for a c class SVM, by solving the optimization
problem that minimizes the estimation error

min
q1,q2,...,qc

cX
i=1

0@X
j,j 6=i

(1− µ̂ij)qi −
X
j,j 6=i

µ̂ijqj

1A2

subject to
cX

i=1

qi = 1, qi ≥ 0, i = 1, 2, . . . , c.

Further details of the algorithm can be found in [31], and a possible
implementation is available at [33].
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