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Abstract. Information hiding has been studied in many security appli-
cations such as authentication, copyright management and digital foren-
sics. In this work, we introduce a new application where successful in-
formation hiding in compiled program binaries could bring system-wide
performance improvements. Our goal is to enhance computer system per-
formance by providing additional information to the processor, without
changing the instruction set architecture. We first analyze the statistics
of typical programs to demonstrate the feasibility of hiding data in them.
We then propose several techniques to hide a large amount of data in
the operand fields with very low computation and storage requirements
during the extraction process. The data embedding is made reversible to
recover the original instructions and to ensure the correct execution of the
computer program. Our experiments on the SPEC CPU2000 benchmark
programs show that up to 110K bits of information can be embedded in
large programs with as little as 3K bits of additional run-time memory
in the form of a simple look-up table.

1 Introduction

The machine instructions in a compiled computer program, as specified by the
Instruction Set Architecture (ISA) of a processor [1], are the primary means for
exchanging information between the programmer and the computer hardware.
An instruction set consisting of fixed width instructions is one of the key as-
pects of the reduced instruction set computing (RISC) architecture principles
employed by several modern processors [1, 2]. This is because fixed width in-
structions are easy to fetch, decode and execute; thus greatly help simplify the
fetch and decode stages of processor pipeline. However, the fixed width RISC
instruction sets make it difficult to expand the instruction encoding space in the
future for adding more information to the existing instructions, or for adding
more instructions to an existing ISA.

It has been shown by several microarchitecture studies in the past that if
a small amount of side information could be added to instructions, it would
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help improve the performance of processors. For example, the accuracy of data
value prediction techniques can be greatly improved if one could embed an extra
bit of information to each instruction of interest. This would help to classify
them based on the predictability criteria, resulting in improved instruction-level
parallelism opportunity as well as better utilization of prediction tables [3]. In
the multiprocessor systems, it has been shown that more relaxed memory con-
sistency models can be easily supported for obtaining better performance on
multiprocessor workloads if one can classify the load/store instructions with an
extra bit of information [4]. In general, even though adding 1-2 extra bits of
information to existing instructions could improve performance or simplify the
hardware structures, it is not practical to re-design the instruction set archi-
tecture (ISA). This is mainly because changing the ISA is a major effort, and
it cannot easily support backward compatibility – making it difficult for older
versions of binary programs to run on the new versions of the processor. It is
clear from the above discussion that embedding additional information to the
instructions of a program binary without modifying the ISA has the potential
for providing system-wide performance improvements.

In this work, we investigate the feasibility and techniques to store and extract
additional information for computer programs in an ISA-independent way and
without inserting extra instructions. We also study the cost for such data em-
bedding and extraction, which can be quantified in several aspects including the
amount of computation and storage needed during embedding and extraction.
Our contribution in this paper is three fold. First, we show that such invert-
ible embedding is possible for most programs. Second, we propose algorithms to
find embeddable program segments and introduce schemes that can achieve data
embedding and extraction transparent to the program execution. Third, we opti-
mize the embedding/extraction algorithms under stringent practical constraints
in terms of computation complexity and storage limitations.

This paper is organized as follows. In Section 2, we discuss the proposed
data hiding framework. The details of the proposed algorithms are explained in
Section 3 along with their simulation results. An improvement to the proposed
schemes to reduce the memory overhead is examined in Section 4 and the related
works are discussed in Section 5. The final conclusions are drawn in Section 6.

2 Challenges, Feasibility, and the Proposed Framework

In this section, we examine the constraints and challenges in hiding data in
program binaries, in order for the processor to take advantage of the hidden
data to enhance the execution performance. We then discuss the feasibility of
hiding data in program binaries and present the proposed data hiding framework
to meet these stringent constraints.

2.1 Challenges and Constraints

Embedding data into program binaries is a challenging task because of the nu-
merous stringent constraints at the decoding side in the Central Processing Unit
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(CPU). Given the high sophistication and performance requirement in modern
processor design, the extra on-chip logic and memory have to be kept minimum
for extracting the hidden data in parallel with the program execution. It is also
not desirable to introduce extra instructions in the program for data hiding,
as it consumes more cycles and slows down the program execution. Compared
with data extraction, the data embedding process can be performed off-line and
only once for a program. Thus, we can afford relatively more computation and
memory resource during data embedding. Another important constraint in hid-
ing data in program binaries is that the data hiding scheme should not interfere
with the normal program execution. This requires the data embedding be re-
versible (or lossless), so that both the original program (host data) and the
embedded data can be recovered at the decoder side without any errors.

Reversible data hiding has been studied in the context of multimedia data [5,
6]. Typically, the host data is first losslessly compressed and the extra informa-
tion is then appended to the compressed host data. At the decoder side, the
appended extra information is read out and the host data is recovered using a
lossless decoding method. The main challenge in compressing a program binary
without interfering normal program execution arises from the fact that the order
of execution of all instructions in a program can be unpredictable. Due to the
data dependent control flows and branches in a program, instructions are not
always executed in the same sequence as they appear in the program binary.
The instruction execution order is often dynamically determined at the program
execution time and some instructions might not be executed at all. Additionally,
all modern processors use speculative execution of instructions [1]. The most
common form of control flow speculation involves executing instructions after
a branch (along a predicted path) before the branch instruction completes its
execution. When the branch condition is resolved and a mis-prediction is in-
dicated, the processor will have to roll-back to the branch. As such, the data
embedding scheme cannot presume a certain execution order to use the previ-
ous instruction(s) to hide information for subsequent instruction(s). Hence it is
very difficult to employ common lossless data compression schemes such as the
Lempel-Ziv and the arithmetic coding [7], where the decoding result depends on
the preceding codes. In other variable-length coding schemes, such as the Huff-
man coding [7], the length of some codewords that appear infrequently may well
exceed the length of an instruction (32 bits) and would not suit our purpose.
These common compression schemes also require a non-trivial amount of static
or run-time memory, which is expensive to accommodate in the CPU design.

To satisfy the stringent computation and memory constraints on the pro-
cessor side and the considerations discussed above, we choose to use individual
instruction as the basic data embedding unit as opposed to using a block of code
segments. We also choose to use fixed-length compression techniques through
simple table lookup operations as opposed to variable-length ones. Next, we dis-
cuss the feasibility of hiding data in program binaries and present the proposed
data hiding framework.
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Fig. 1. A lossless data hiding framework for program binaries

2.2 A Lossless Data Hiding Framework for Program Binaries

We use IBM PowerPC ISA as an example to demonstrate the feasibility of hiding
data in program binaries. The principle of our scheme can be extended to other
ISAs. The IBM PowerPC ISA is a typical RISC ISA with fixed-width instruction
encoding [8]. A typical PowerPC instruction contains 4 bytes of information,
including 6 bits for the opcode (which indicates the type of operation) and the
remaining 26 bits for the operand (which indicates the parameters to use). The
26-bit operand suggests a total of 226 possible combinations. While using 26
bits to represent these combinations makes it easy for the computer hardware
to process, information theory suggests that it is possible to use fewer than 26
bits if the 226 combinations are not equally likely to appear [7].

To understand the distribution of the operand combinations in computer
programs, we examine the SPEC CPU2000 benchmark programs [9]. SPEC
CPU2000 are a collection of representative programs widely used in computer
system research. A brief description of the SPEC programs can be found in the
Appendix of this paper. By analyzing the operands of these representative pro-
grams, we observe that only a very small portion of the 226 combinations in the
operand field actually appear in a program. The number of unique combinations
of the operands that occur at least once in each of the SPEC programs are shown
in Table 1. The table shows that less than one percent of the 226 possible com-
binations are used in these programs. This important observation suggests that
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the operand information can be represented in fewer than 26 bits, and there is
a considerable amount of room to compress the operands and hide data.

As a general framework for reversible data hiding in program binaries, we
first losslessly compress the compiled program binaries and embed the side in-
formation into them. The details of the embedding and the extraction processes
are shown in Fig. 1. Since each instruction in the program binary usually con-
tains a short opcode and a longer operand field, we focus on the operand field
and compress them in a lossless manner to represent them in fewer bits. We
then use the resulting space to store the desired extra information. The data
extraction is performed during program execution. In this stage, the operand
field is decompressed and side information is extracted. The opcode along with
the decompressed operand field is executed the normal way. The extracted side
information may be used by the processor pipeline for a variety of applications.

In principle, if X distinct combinations appear in the operand field, we can
represent the operands uniquely in y = �log2(X)� bits with a one-to-one re-
versible mapping. The mapping table can be stored in program header and used
to establish a look-up table (LUT) in the data extractor, as long as its size is
very small compared to the number of bits gained. The (26−y) bits per instruc-
tion that are obtained in this process can be used to store the side information.
At the data extraction side, the y-bit compressed operand is replaced by the
matching 26-bit operand found in the LUT. Once the hidden data is extracted
and the original instruction is recovered, the extracted side information can be
utilized without affecting the normal program execution.

For large programs such as the CC1 (GNU C++ compiler), we have X =
86355 and y = 17 from Table 1, suggesting that we would save 26−y = 9 bits per
instruction to store the side information. However, if we build a mapping table
for these 86355 instructions, its size would be at least X × 26 = 2245230 bits.
Clearly, this is a large overhead for gaining 9-bit side information per instruction.
Moreover, it is difficult to store such a large table in the on-chip memory for fast
access. Therefore, instead of trying to embed many bits into each instruction,
we consider a more practical objective, namely, to embed only one or a few
bits into each instruction using as small LUT as possible. In the next section,
we will discuss how to design data hiding schemes that can achieve fast and
resource-efficient data extraction.

3 The Proposed Data Hiding Algorithms

Computer architecture research has suggested that even one-bit side information
per instruction would be very advantageous to enhance system performance.
As such, we focus on designing efficient techniques to embed one bit of extra
information per instruction. These techniques can easily be extended to embed
more than one bit per instruction at an added cost of a larger LUT.

Considering the challenges and constrains posed in Section 2.1, we propose
the following practical method for embedding information into a program. We
search for the smallest n so that there exists a subset of n operand bits (out of
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Table 1. Statistics of SPEC programs and the data hiding results by applying the
Exhaustive Search algorithm to all instructions.

Program Total # # of distinct n Memory Relative
Name of instructions combinations for LUT overhead (η)

in the program appearing in (S bits) Memory req. /
(N) operand field (X) Data Hidden

SWIM 2937 1800 9 2330 79.33 %
ART 5985 2564 9 2330 38.93 %
WUPWISE 8218 3807 9 2330 28.35 %
EQUAKE 9589 4500 10 5146 53.66 %
LUCAS 12449 6430 10 5146 41.34 %
APPLU 15936 8992 10 5146 32.29 %
MCF 18351 6738 10 5146 28.04 %
FACEREC 19044 9015 10 5146 27.02 %
GZIP 28727 10443 11 11290 39.30 %
BZIP2 28632 9838 11 11290 39.43 %
APSI 43244 18538 12 24602 56.89 %
AMMP 46346 15682 12 24602 53.08 %
GALGEL 57971 19990 12 24602 42.44 %
PARSER 62807 15194 11 11290 17.98 %
CRAFTY 72486 23876 11 11290 15.58 %
TWOLF 85981 23876 12 24602 28.61 %
EON 121012 23787 11 11290 9.33 %
MGRID 151202 31492 13 53274 35.23 %
VORTEX 167056 29951 11 11290 6.76 %
VPR 182039 36942 13 53274 29.27 %
PERLBMK 192898 35929 12 24602 12.75 %
MESA 209986 39538 13 53274 25.37 %
GAP 220308 39085 13 53274 24.18 %
FMA3D 235383 80849 13 53274 22.63 %
SIXTRACK 360292 84514 14 114714 31.84 %
CC1 571820 86355 14 114714 20.06 %

the 26 bits), for which no more than 2n−1 distinct operand combinations have
appeared in the program. We can then losslessly represent this subset of n bits
using (n − 1) bits and thus provide one bit per instruction for data hiding. To
facilitate the discussion, we say that the operands set has a Negative Redundancy
of n in this case. A lower value of negative redundancy implies more redundancy
in the program, and in turn a smaller LUT for data embedding and extraction.

As far as data extraction is concerned, if we have M combinations of n-
bit pattern appearing, we would require a LUT of size M × n for the inverse
mapping. Additionally, we would require up to 26 bits to specify the subset of
bits involved in the mapping. Thus, the total cost in terms of memory usage is
upper bounded by (Mn+26) bits. As mentioned earlier, this LUT can be stored
in the program header, and will be loaded into run-time memory to initialize the
data extractor at the beginning of program execution. To reduce the overhead
in program storage and in run-time memory, we would prefer this LUT to be as
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small as possible. The data embedding can be performed by searching through
the LUT, and the computation and memory requirement for embedding are
much less stringent than for extraction. These considerations lead us to propose
the following encoding and decoding algorithms.

3.1 Exhaustive Search Algorithm

As indicated before, the size of the look-up table (S) is upper bounded by (Mn+
26) bits where M ≤ 2n−1. To minimize the memory and computation overhead
at the decoding end, we would like to find the smallest subset of bits for which we
start to see at most 2n−1 distinct combinations appear. We denote this optimal
value of n by nopt and the optimal subset that gives this mapping by Ωopt. One
way to find nopt and Ωopt is by exhaustively searching over every possible subset.
The worst case complexity of the search over the 26-bit operand is

(
26
1

)
+

(
26
2

)
+

· · · + (
26
26

)
= 226 − 1 on the embedder side. The Exhaustive Search algorithm is

described in Algorithm 1.

Algorithm 1 Exhaustive Search Algorithm
Input: Compiled Static Instruction file
Output: Possible Mapping
for n = 1, 2,. . . , 26 do

Initialize: Γ - set of all possible n-bit combinations
for k = 1, 2, . . .,

(
26
n

)
do

Choose as P , the kth n-tuple in Γ .
Count the number of distinct combinations that appear in P . Call it X
if X ≤ 2n−1 then
{One possibility found}
return Obtained Position (P)

end if
end for

end for

The exhaustive search algorithm for finding the bit positions was tested on
the standard SPEC CPU2000 benchmark program suite [9]. In this experiment,
we consider all the instructions in a program and try to find a bit-position combi-
nation that can be used for embedding. The experiment results are summarized
in Table 1. We list the number of instructions (N) in the program (excluding all
the relocatable instructions that will be modified by the OS loader); the num-
ber of unique combinations of the bit positions, out of the possible 226, in the
operand fields (X); the negative redundancy of the operand bits (n); the memory
required to store the inverse mapping table (S); and its ratio (η) with respect to
the amount of data hidden (D), where D is equal to the number of instructions
with one hidden bit per instruction. From the results, we observe that the nega-
tive redundancy n is usually in the range of 9 to 15 and therefore the size of the
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LUT, S, is not small. Moreover, the ratio η is above 20% in most cases and this
indicates a relatively high overhead in obtaining data hiding payload. Another
disadvantage for the exhaustive search is the high computational complexity in
finding the bit positions. However, it provides a basis for comparison with other
search algorithms.

3.2 Consecutive Search Algorithm

The exhaustive search algorithm has two problems - large memory requirement
in data extraction and high computational complexity in data embedding. To
address these problems, we introduce the consecutive search algorithm. We also
observe through experiments that n can be greatly reduced if we choose to embed
data in only a subset of instructions (e.g. load/store instructions) that appear
frequently in static programs.

To speed up the search for the bit positions, we propose a modified approach
to find the sub-optimal value of n by considering only consecutive bit positions in
the search. This would speed up the encoding process exponentially. The number
of iterations required to find a mapping reduces from

(
26
n

)
to (26 − n) + 1 for

a particular n. We denote this sub-optimal value of n by n
(c)
sopt to reflect the

positions being consecutive. While we have n
(c)
sopt ≥ nopt, our experiments show

that it is close to the optimal solution in most cases. The Consecutive Search
algorithm is described in detail in Algorithm 2.

This method of choosing consecutive bit positions was tested with the SPEC
CPU2000 benchmark suite [9]. In this experiment, we selected the Load/Store
instructions for data hiding, as the memory access are often the performance bot-
tleneck in program execution [1]. For comparison, the results for the exhaustive
and consecutive search are shown in Table 2. We note that in most programs,
about one third of the instructions are load/store instructions. Therefore, there
is still a substantial amount of space for hiding data. From the table we can see
that nopt is usually around 5–9, while n

(c)
sopt is greater than nopt by 1 or 2 bits;

and the total memory required for data extraction is usually no more than 2500
bits. Furthermore, the computation complexity is greatly reduced when consec-
utive search is employed. We also observe that by restricting our data hiding
scheme to only load/store instructions, the ratio η = S/D is only around 5%,
which indicates that we can hide more data for a fixed amount of memory usage.

3.3 Iterative Search Algorithm

In this part, we introduce the Iterative Search algorithm to mitigate the disad-
vantages of both the exhaustive search and the consecutive search algorithms
discussed before. The Iterative Search algorithm is based on the observation
shown in Table 3, that the exhaustive and consecutive search algorithms often
produce bit position subsets that have a large overlap. So we first run the Con-
secutive Search algorithm to find an initial guess for the solution with a negative
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Algorithm 2 Consecutive Search Algorithm
Input: Compiled Static Instruction file
Output: Possible Mapping
for n = 1, 2,. . . , 26 do

Initialize:
Γ - set of all possible n-bit combinations, where |Γ | = 27− n
Γ = {(1, 2, . . . , n), (2, 3, . . . , n + 1), . . . , (26− n + 1, . . . , 26)}
for k = 1, 2, . . ., 26− n + 1 do

Choose as P , the kth n-tuple in Γ
Count the number of distinct combinations that appear in P . Call it X
if X ≤ 2n−1 then
{One possibility found}
return Obtained Position (P)

end if
end for

end for

redundancy of n
(c)
sopt, and then proceed with an iterative algorithm to find the

optimal solution.
Suppose the solution in the i-th iteration has a negative redundancy of r

and the set of bit positions is Pi. In the (i + 1)-th iteration, we use Pi to find
a solution of negative redundancy r − 1 by a systematic search. In this search,
we form a new set of bit positions by choosing j (j = r − 1, r − 2, . . . , 1, 0)
positions out of the solution Pi and remaining (r − 1− j) positions from the set
{1, 2, . . . , 26}−Pi. The basic idea behind this ordering is the resemblance of the
final optimal solution (obtained using exhaustive search) and the sub-optimal
solution (obtained using the consecutive search), as indicated by Table 3. We
then check if this set of bit positions is a possible solution. We initially start
our iteration from j = r − 1 and proceed to lower values of j. If we are able
to find a mapping of negative redundancy (r − 1), we update Pi+1 to the set of
new bit positions and proceed on to the next iteration. It is to be noted that if
Pi+1 is a solution, then adding any extra bit to Pi+1 set still remains a solution.
Therefore, if we are not able to find any mapping of negative redundancy (r−1),
we conclude that there is no mapping with a negative redundancy less than r and
declare Pi to be the optimal solution. The details are presented in Algorithm 3.

We note that the Iterative Search algorithm in the worst case corresponds
to the Exhaustive Search algorithm and in the best case would correspond to
the Consecutive Search algorithm in terms of computational requirements. By
this ordered search, we can expect to reach the optimal solution nopt in fewer
iterations than the exhaustive search.

4 Improved Data Hiding through Program Partitioning

In this section, we reduce the storage overhead of the basic data hiding algorithm
introduced in the previous section by program partitioning. We divide the main
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Table 2. Data hiding results of the Consecutive and Exhaustive Search algorithms on
Load/Store instructions. One bit is embedded in each load/store instruction.

Total # # of # of unique Overhead Overhead

Program instr. in embeddable combinations nopt n
(c)
sopt LUT (sub-opt) (opt)

Name the prog. Load/Store of Ld/St instr. size
(N) instructions appearing in (bits) mem.req.

datahidden
mem.req.

datahidden

(Nls) operands(Xls) ×100% ×100%

SWIM 2937 854 515 4 5 58 12.41 % 6.79 %
ART 5985 1611 544 5 6 106 13.53 % 6.57 %
WUPWISE 8218 2682 1255 5 5 106 3.95 % 3.95 %
EQUAKE 9589 3581 1526 5 6 106 6.09 % 2.96 %
LUCAS 12449 3755 2059 5 5 106 2.82 % 2.82 %
APPLU 15936 5846 3563 7 7 474 8.11 % 8.11 %
MCF 18351 5272 1976 5 7 106 8.99 % 2.01 %
FACEREC 19044 6215 3506 4 5 58 1.71 % 0.93 %
GZIP 28727 7546 2627 5 8 106 13.91 % 1.40 %
BZIP2 28632 7604 2163 6 8 218 13.80 % 2.87 %
APSI 43244 16380 6429 7 7 474 2.89 % 2.89 %
AMMP 46346 15338 4830 6 8 474 6.84 % 3.09 %
GALGEL 57971 20062 7405 8 8 1050 5.23 % 5.23 %
PARSER 62807 17182 3482 5 8 106 6.11 % 0.61 %
CRAFTY 72486 18213 5710 5 8 106 5.76 % 0.58 %
TWOLF 85981 26965 6204 6 8 218 3.89 % 0.81 %
EON 121012 43185 7646 7 8 474 2.43 % 1.09 %
MGRID 151202 39662 7299 9 10 2330 12.98 % 5.87 %
VORTEX 167065 43696 5346 5 8 106 2.40 % 0.24 %
VPR 182039 42880 7238 9 10 2330 12.00 % 5.43 %
PERLBMK 192898 57535 5733 7 8 474 1.82 % 0.82 %
MESA 209986 67305 14037 9 9 2330 3.46 % 3.46 %
GAP 220308 58038 6855 7 9 474 4.01 % 0.81 %
FMA3D 235383 98215 41437 8 8 1050 1.07 % 1.07 %
SIXTRACK 360292 101848 26804 11 11 11290 11.08 % 11.08 %
CC1 571820 138792 13373 9 10 2330 3.70 % 1.67 %

program into several parts and find a mapping table for each part. Each table
would have smaller size than without the partitioning. These tables can be stored
together in the program header and loaded to the on-chip memory sequentially
during program execution. The storage overhead in the static program is the
total size of all LUTs, but the run-time memory overhead is determined only by
the size of the largest LUT.

We use the program SIXTRACK to illustrate this principle. From Table 2,
we see that the size of the LUT for SIXTRACK is more than 11K bits without
program partitioning. When we split the program into several segments and
embed data into each segment, we can reduce the mapping table size by a factor
of two to four. These results are shown in Table 4. Similar experiments were
conducted on some other SPEC program files to find out the minimum number



Data Hiding in Compiled Program Binaries 11

Table 3. Operand positions obtained for data hiding using the Exhaustive Search and
the Consecutive Search algorithms

Exhaustive Search Consecutive Search

Program Name nopt operand bits selected n
(c)
sopt operand bits selected

MCF 5 (1,2,11,12,13) 7 (10,11,12,13,14,15,16)
PARSER 5 (2,3,11,12,13) 8 (6,7,8,9,10,11,12,13)
TWOLF 6 (1,2,3,11,12,13) 8 (6,7,8,9,10,11,12,13)
EON 7 (2,3,7,8,11,12,13) 8 (7,8,9,10,11,12,13,14)
VORTEX 5 (1,2,11,12,13) 8 (7,8,9,10,11,12,13,14)

Algorithm 3 Iterative Search Algorithm
Input: Compiled Static Instruction file (F)
Output: Possible Mapping
Initialize: P1 = Consecutive Search(F)

n
(c)
sopt = |P1|

for i = 1, 2, . . ., 26 do
{Use Pi to find Pi+1 of a lower negative redundancy}
Γi = Generate Ordered Positions (Pi)
for k = 1, 2, . . ., |Γi| do

Choose as pk, the kth (n-1)-tuple in Γi

Count the number of distinct combinations that appear in pk. Call it X
if X ≤ 2n−2 then
{One possibility found}
Pi+1 ← pk

break for loop and goto flag:
end if

end for
if X > 2n−2 for all positions in Γi then
{Pi is the best solution}
return Pi

end if
flag:

end for

Generate Ordered Positions
Input: Initial Guess (p)
Output: Ordered set (Γ ) to run search
Initialize: n = |p| − 1
for j = n, n− 1, . . ., 0 do

Obtain a subset p1 by choosing j components from the vector p
Obtain a subset p2 by choosing n−j components from the vector {1, 2, . . . , 26}−p
Concatenate p1 and p2 to form a search vector g
Add the search vector g to the set Γ

end for
return Γ
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Table 4. Data hiding results using program partitions for the SIXTRACK program

Negative Total # bits Memory overhead
Redundancy hidden (LUT size in bits)

(a) FULL PROCESSING 11 101848 11290

(b) BLOCK PROCESSING - 3 BLOCKS
First Set (100K instructions) 6 27005 218

Second Set (100K instructions) 9 27155 2330
Third set (160K instructions) 9 47688 2330

Total 101848 4878

(c) BLOCK PROCESSING - 4 BLOCKS
First Set (100K instructions) 6 27005 218

Second Set (90K instructions) 8 24722 1050
Third set (90K instructions) 7 26677 474

Fourth set (80K instructions) 8 23444 1050
Total 101848 2792

Table 5. Results on program partition for selected SPEC programs: showing here are
the number of partitions required to limit the size of each LUT to be less than a given
value S.

Program Name S = 1 Kbits S = 12 Kbits S = 24 Kbits

SWIM 2 1 1
APPLU 5 1 1
APSI 11 4 1
GALGEL 14 6 3
TWOLF 20 5 2
VORTEX 37 8 1
PERLBMK 42 10 2
MESA 45 12 2
GAP 47 14 2

of partitions required to limit the size of each LUT to be less than a given value
S. Table 5 presents the results for three different values of S. We can see that
program partitioning can help reduce the size of each LUT to a manageable
extent. This is achieved at the cost of reloading the corresponding LUT prior to
the execution of each partition. Such cost can be reduced by carefully designing
the partitions based on program flow models.

5 Related Work

In this paper, we investigate the possibility of data hiding in complied program
binaries for enhancing system performance in RISC ISAs. The related prior art
mostly falls in four main categories:

Steganography for program binaries has been studied in [18], where side
information is inserted into a selected set of binary instructions by choosing
one out of two (or more) different forms of the instruction that are functionally
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identical. Such an embedding scheme requires an equal amount of computation
both at the embedding side and at the decoding side. To achieve reversibility,
the effective embedding payload will be substantially reduced.

In the computer architecture field, there are works on instruction abbrevia-
tion techniques for embedded DSPs. In [10], the authors present a technique for
entropy bounded encoding of the ISA, where the primary concern is on variable
size instructions which frequently occur in DSP architecture. In [11] and [12],
the authors present an instruction set synthesis technique for configurable ASIPs
and variable instruction set architectures. As these techniques require changes
to the ISA, they cannot be applied in fixed-width RISC instruction sets.

Software watermarking techniques have been proposed for intellectual prop-
erty protection. Early software watermarking schemes re-organize basic blocks
in complied codes to embed a hidden mark [13]. Later, it was proposed to incor-
porate graph theoretical approaches in software watermarking [14]. In this case,
the mark is embedded by inserting extra instructions and re-structuring existing
instructions in a given program; and the watermark is formed by the control
flow of the program. Dynamic path-based software watermarking was proposed
in [15]. It uses the run-time trace of a program and a particular program in-
put (the secret key) to carry hidden information. An analogous approach was
proposed to watermark HDL code for ASIC and FPGA design [16]. All these
schemes aim at preventing software piracy, where hostile adversaries have strong
incentives to remove the embedded watermark. In our application of enhancing
computer system performance, such adversarial environment does not exist and
our focus is to provide side information to the processor at the lowest cost. In
most software watermarking schemes, usually after watermark embedding, the
number of instructions will be increased and the execution of the program will be
slowed down. In contrast, our scheme aims at speeding up the program execution
while maintaining the number of instructions.

In the field of multimedia signal processing, various techniques for reversible
data hiding and lossless compression have been proposed for multimedia data [5,
6]. Some algorithms use additive spread spectrum techniques [17] and some oth-
ers hide data by modifying selected features (such as the LSB) of the host sig-
nal [5]. These techniques cannot be directly extended for hiding data in program
binaries because of the inherent differences in the host data. As discussed in
Section 2.1, compression techniques such as the Lempel-Ziv and the arithmetic
coding require the knowledge of the execution order of the instructions and are
not suitable for our purpose. To our best knowledge, the current paper presents
the first work that applies information hiding techniques to program binaries
of fixed-width instruction set processors, whereby extra information is transpar-
ently embedded and can be extracted with very low cost by the processor to
enhance computer system performance.

6 Conclusions

In this work, we have investigated data hiding in computer programs for trans-
parently embedding additional information that may be used by the processor
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for a variety of applications. We have shown that it is feasible to achieve efficient
data hiding and fast data extraction using minimal additional logic and mem-
ory resources. We present a framework to achieve ISA-independent data hiding
that is transparent to program execution. Under this framework, we introduce
three algorithms to find bit positions in the operands of instructions that can
be losslessly compressed to embed data. In addition, we propose improvement
techniques through program partition to reduce the cost in data embedding and
extraction. The effectiveness of our approaches are demonstrated through exper-
imental results on the SPEC benchmark programs. Our experiments show that
in most cases the proposed schemes can achieve linear time complexity in data
embedding and require less than 3K bits of run-time memory overhead.
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Appendix - Description of the SPEC benchmarks [9]

Program Program Language Description
Name Type

SWIM float Fortran 77 Shallow water modelling software.
ART float C Adaptive Resonance Theory (ART) neural network -

used to recognize objects in a thermal image
WUPWISE float Fortran 77 Wuppertal Wilson Fermion Solver - a program in

quantum chromodynamics
EQUAKE float C Simulates seismic wave propagation
LUCAS float C Lucas-Lehmer test for primality check
APPLU float Fortran 77 Computational fluid dynamics and physics
MCF integer C Combinatorial optimization
FACEREC float Fortran 90 Implementation of a face recognition system
GZIP integer C GNU zip for data compression
BZIP2 integer C Compression program
APSI float Fortran 77 Program used in weather prediction
AMMP float C Program used in computational chemistry to

model large systems of molecules
GALGEL float Fortran 90 Program used in computational fluid dynamics
PARSER integer C Program used for word processing
CRAFTY integer C A high-performance computer chess program
TWOLF integer C Used in computer aided design
EON integer C++ A probabilistic ray tracer based computer

visualization program
MGRID float Fortran 77 A simple multi-grid solver in computing

three dimensional potential field
VORTEX integer C A single-user object-oriented database

transaction benchmark
VPR integer C Versatile Place and Route (VPR) is a FPGA

circuit placement and routing program
PERLBMK integer C A cut-down version of Perl v5.005 03 program
MESA float C A free OpenGL work-alike 3D graphics library
GAP integer C Implements a language and library designed

mostly for computing in groups
FMA3D float Fortran 90 A finite element method computer program

designed for Mechanical Response Simulation
SIXTRACK float Fortran 77 High energy nuclear physics accelerator design
CC1 integer C C++ language compiler


