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Abstract. This paper presents a new method for robust data hiding in
curves and highlights potential applications including digital fingerprint-
ing of map document for trace and track purposes. We parameterize a
curve using the B-spline model and add a spread spectrum sequence to
the coordinates of the B-spline control points. In order to achieve robust
fingerprint detection, we propose an iterative alignment-minimization al-
gorithm to perform curve registration and deal with the non-uniqueness
of B-spline control points. We show through experiments the robust-
ness of our method against various attacks such as collusion, geometric
transformations and perturbation, printing-and-scanning, and some of
their combinations. We demonstrate the feasibility of our method for
fingerprinting topographic maps as well as writings and drawings. The
extension from hiding data in 2D topographic maps to 3D elevation data
sets is also discussed.

1 Introduction

Map represents geospatial information ubiquitous in government, military, in-
telligence, and commercial operations. The traditional way to protecting map
from unauthorized copying and distribution is to place deliberate errors in the
map, such as spelling “Nelson Road” as “Nelsen Road”, bending a road in a
wrong way, and/or placing a non-existing pond. If an unauthorized user has a
map containing basically the same set of errors, this is a strong piece of evidence
on piracy that can be presented in court. However, the traditional protection
methods alter the geospatial meanings conveyed by a map, which can cause
serious problems in critical government, military, intelligence, and commercial
operations where highly precise geospatial information is needed. Further, in
the situations where the distinct errors serve as fingerprints to trace individual
copies, such intentional errors can be rather easily identified and removed by
computer algorithms after multiple copies of a map are brought to the digital
domain. All these limitations of the traditional methods prompt for a modern
way to map protection that can be more effective and less intrusive.

Curve is one of the major components appearing in maps as well as other
documents such as drawings and signatures. A huge amount of curve-based
documents are being brought to the digital domain owing to the popularity
of scanning devices and pen-based devices (such as TabletPC). Digital maps
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and drawings are also generated directly by various computer programs such as
map-making software and CAD systems. Having the capability of hiding digital
watermarks or other secondary data in curves can facilitate digital rights man-
agement of important documents in government, military, intelligence, and com-
mercial operations. For example, trace-and-track capabilities can be provided
through invisibly embedding a unique ID, referred to as a digital fingerprint, to
each copy of a document before distributing to users [1]. In this paper, we present
a new, robust data hiding technique for curves and investigate its feasibility for
fingerprinting maps.

As a forensic mechanism to deter information leak and to trace traitors,
digital fingerprint must be difficult to remove. For maps and other visual doc-
uments, the fingerprint has to be embedded in a robust way against common
processing and malicious attacks. Some examples include collusion, where sev-
eral users combine information from different copies to generate a new copy in
which the original fingerprints are removed or attenuated [1]; various geometric
transformations such as rotation, scaling, and translation (RST); and D/A-A/D
conversions such as printing-and-scanning. On the other hand, the fingerprint
must be embedded in a visually non-intrusive way without changing the geo-
graphical and/or visual meanings conveyed by the document. Such changes may
have serious consequences in critical military and commercial operations, for ex-
ample, when inaccurate data are given to troops or fed into navigation systems.

There is a very limited amount of existing work on watermarking maps [2],
and few exploits curve features or addresses fingerprinting issues. A text-based
geometric normalization method was proposed in [3], whereby text labels are
used to normalize the orientation and scale of the map image and conventional
robust watermarking algorithms for grayscale images are then applied. As maps
can be represented as a set of vectors, two related works on watermarking vector
graphics perturb vertices through Fourier descriptors of polygonal lines [4] or
spectral analysis of mesh models [5] to embed copyright marks. The embedding
in [4] introduces visible distortions, as shown in their experimental results. The
watermarking approach in [5] has high complexity resulting from the mesh spec-
tral analysis. Besides, it cannot be easily applied to maps beyond urban areas,
where curves serve as an essential component in mapping a vast amount of land
and underwater terrains. Since curve-based documents can also be represented
as binary bitmap images (known as the raster representation), we expand the
literature survey to data embedding works for general binary images. The data
hiding algorithm in [6] enforces the ratio of black versus white pixels in a block
to be larger or smaller than 1, and the “flippable” pixels are defined and used to
enforce specific block-based relationship to embed data in [7][8]. The fragility of
the embedding and the reliance on precise sampling of pixels for correct decoding
pose challenges in surviving geometric transformations, printing-and-scanning,
and malicious removal in fingerprinting applications.

There are several watermarking algorithms for graphic data employing para-
metric features, such as representing 3D surfaces by the non-uniform rational
B-spline (NURBS) model and changing the NURBS knots or control points to
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embed data [9][10]. While these works provide enlightening analogy for water-
marking the 2D counterpart (i.e. curves) in the B-spline feature domain, most
of the existing explorations and results are for fragile embedding in 3D surfaces
and have limited robustness. There has been few discussion on robust water-
marking of curves, and to our knowledge, no existing work has demonstrated
the robustness against curve format conversion and D/A-A/D conversion.

In this paper, we propose a robust curve watermarking method and apply
it to fingerprinting maps without interfering with the geospatial meanings con-
veyed by the map. We select B-spline control points of curves as the feature
domain and add mutually orthogonal, noise-like sequences as digital fingerprints
to the coordinates of the control points. A proper set of B-spline control points
forms a compact collection of salient features representing the shape of the
curve, which is analogous to the perceptually significant spectral components
in the continuous-tone images [11]. The shape of curves is also invariant to such
challenging attacks as printing-and-scanning and the vector/raster-raster/vector
conversion. The additive spread spectrum embedding and the corresponding cor-
relation based detection generally provide a good tradeoff between imperceptibil-
ity and robustness [11]. To determine which fingerprint sequence(s) are present
in a test curve, registration with the original unmarked curve is an indispensable
preprocessing step. B-splines have invariance to affine transformation in that the
affine transformation of a curve is equivalent to the affine transformation of its
control points. This affine invariance property of B-splines can facilitate auto-
matic curve registration. Meanwhile, as a curve can be approximated by different
sets of B-spline control points, we propose an iterative alignment-minimization
(IAM) algorithm to simultaneously align the curves and identify the correspond-
ing control points. Through the B-spline based data hiding plus the IAM algo-
rithm for robust fingerprint detection, our curve watermarking technique can
sustain a number of challenging attacks such as collusion, geometric transforma-
tions, vector/raster-raster/vector conversions, and printing-and-scanning, and
is therefore capable of building collusion-resistant fingerprinting for maps and
other curve-based documents.

The paper is organized as follows. Section 2 discusses the feature domain in
which data hiding is performed and presents the basic embedding and detection
algorithms with experimental results on marking simple curves. Section 3 details
the proposed iterative alignment-minimization algorithm for the fingerprint de-
tection and analyzes its robustness. Experimental results on fingerprinting to-
pographic maps are presented in Section 4 to demonstrate the robustness of our
method against a number of processing and attacks. Section 5 extends our curve
watermarking method to protecting 3D geospatial data set. Finally conclusions
are drawn in Section 6.

2 Basic Embedding and Detection

We first present the basic embedding and detection scheme on curves. We employ
the coordinates of B-spline control points as the embedding feature domain,
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and adopt spread spectrum embedding [11] and correlation-based detection for
watermarking curves.

2.1 Feature Extraction

A number of approaches have been proposed for curve modelling, including us-
ing the chain codes, the Fourier descriptors, the autoregressive models, and the
B-splines [12]. Among them, the B-splines are particularly attractive and have
been extensively used in computer-aided design and computer graphics. This is
mainly because the B-spline model provides a bounded and continuous approx-
imation of a curve with excellent local shape control and is invariant to affine
transformations [13]. These advantages also lead to our choosing B-splines as
the feature domain for data embedding in curves.

B-splines are piecewise polynomial functions that provide local approxima-
tions of curves using a small number of parameters known as the control points
[12]. Let {p(t)} denote a curve, where p(t) = (px(t), py(t)) and t is a continuous
time variable. Its B-spline approximation {p[B](t)} can be written as

p[B](t) =
n∑

i=0

ciBi,k(t), (1)

where ci = (cxi
, cyi) is the ith control point (i = 0, 1, . . . , n), t ranges from 0 to

n − 1, and Bi,k(t), the weight of the ith control point for the point p[B](t), is a
corresponding kth order B-spline blending function recursively defined as

Bi,1(t) =
{
1 ti ≤ t < ti+1
0 otherwise,

Bi,k(t) =
(t − ti)Bi,k−1(t)

ti+k−1 − ti
+

(ti+k − t)Bi+1,k−1(t)
ti+k − ti+1

k = 2, 3, ... (2)

where {ti} are parameters known as knots and represent locations where the
B-spline functions are tied together [12]. The placement of knots controls the
form of B-spline functions and in turn the control points.

As a compact representation, the number of B-spline control points neces-
sary to represent the curve at a desired precision can be much smaller than
the number of sample points from the curve typically obtained through uni-
form sampling. Thus, given a set of samples on the curve, finding a smaller
set of control points for its B-spline approximation that minimizes the approx-
imation error to the original curve can be formulated as a least-squares prob-
lem. Coordinates of the m + 1 samples on the curve can be represented as an
(m+ 1)× 2 matrix of P

�
= (px,py). The time variables of the B-spline blending

functions corresponding to these m+ 1 samples are t = s0, s1, s2, . . . , sm, where
s0 < s1 < s2 < . . . < sm. Further, let C

�
= (cx, cy) represent the coordinates

of n + 1 control points. Then we can write the least-squares problem with its
solution as

BC ≈ P =⇒ C =
(
BTB

)−1
BTP = B†P, (3)
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where {B}ji is the value of the kth-order B-spline blending function Bi,k(t) in
(2) evaluated at t = sj and † denotes the pseudo inverse of a matrix. Due to the
natural decoupling of the x and y coordinates in the B-spline representation, we
can solve the problem separately along each of the two coordinates as{

Bcx ≈ px

Bcy ≈ py
=⇒

{
cx = B†px

cy = B†py
. (4)

2.2 Data Embedding and Detection in Control Points

The control points of a curve are analogous to the perceptually significant spec-
tral components of a continuous-tone image [11] in that they form a compact set
of salient features for curve. In such a feature domain, we apply spread spectrum
embedding and correlation based detection.

The spread spectrum embedding generally offers a good tradeoff between im-
perceptibility and robustness, especially when the original host signal is available
to the detector as in most of the fingerprinting applications [1]. In the embed-
ding, we use mutually orthogonal, noise-like sequences as digital fingerprints to
represent different users/IDs for trace and track purposes. As each of the n + 1
control points has two coordinate values x and y, the overall length of the fin-
gerprint sequence is 2(n+ 1). To apply spread spectrum embedding on a curve,
we add a scaled version of the fingerprint sequence (wx,wy) to the coordinates
of a set of control points obtained from the previous subsection. This results in
a set of watermarked control points

(
c′

x, c′
y

)
with{

c′
x = cx + αwx

c′
y = cy + αwy

, (5)

where α is a scaling factor adjusting the fingerprint strength. A watermarked
curve can then be constructed by the B-spline synthesis equation (1) using these
watermarked control points.

To determine which fingerprint sequence(s) are present in a test curve, we
first need to perform registration using the original unmarked curve that is com-
monly available to a detector in fingerprinting applications. After registration,
control points (c̃x, c̃y) are extracted from the test curve. The accurate registra-
tion and correct extraction of control points are crucial to the accurate detection
of fingerprints, which will be detailed in Section 3. Assuming we have the set of
sample points given by (p̃x, p̃y)= (B(cx + αwx),B(cy+αwy)), we can extract
the test control points (c̃x, c̃y) from (p̃x, p̃y) using (4). After getting (c̃x, c̃y),
we compute the difference between the coordinates of the test and the original
control points to arrive at an estimated fingerprint sequence{

w̃x = c̃x−cx

α

w̃y = c̃y−cy

α

. (6)

We then evaluate the similarity between this estimated fingerprint sequence and
each fingerprint sequence in our database through a correlation-based statistic.
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In our work, we compute the correlation coefficient ρ and convert it to a Z-
statistic by

Z = log
(
1 + ρ

1 − ρ

) √
2(n + 1) − 3

2
. (7)

The Z-statistic has been shown to follow an approximate unit-variance Gaussian
distribution with a large positive mean under the presence of a fingerprint, and
a zero mean under the absence [14][15]. Thus, if the similarity is higher than a
threshold (usually set between 3 to 6 for Z statistics), with high probability the
corresponding fingerprint sequence in the database is present in the test curve,
allowing us to trace the test curve to a specific user.

2.3 Fidelity and Robustness Considerations

Estimating the control points requires a set of properly chosen sample points
from the curve. Uniform sampling can be used when there are no abrupt changes
in a curve segment, while nonuniform sampling is desirable for curve segments
that exhibit substantial variations in curvature.

The number of control points is an important parameter for tuning. De-
pending on the shape of the curve, using too few control points could cause
the details of the curve be lost, while using too many control points may lead
to over fitting and bring artifacts even before data embedding. The number of
control points not only affects the distortion introduced by the embedding, but
also determines the fingerprint’s robustness against noise and attacks. The more
the control points, the longer the fingerprint sequence, and in turn the more
robust the fingerprint against noise and attacks. In our tests, the number of
control points is about 5-8% of the total number of curve pixels and the specific
numbers will be provided with the experimental results.

The scaling factor α also affects the invisibility and robustness of the fin-
gerprint. The larger the scaling factor, the more robust the fingerprint, but the
larger the distortion resulted in. For cartographic applications, industrial stan-
dards provide guidelines on the maximum allowable changes [5]. Perturbation of
2 to 3 pixels is usually considered acceptable. We use random number sequences
with unit variance as fingerprints and set α to 0.5 in our tests.

2.4 Experimental Results of Fingerprinting Simple Curves

We first present the fingerprinting results on a simple “Swan” curve in Figure
1(a) to demonstrate our basic embedding and detection algorithms. The curve
was hand-drawn on a TabletPC and stored as a binary image of size 392×329.
We use the contour following algorithm in [16] to traverse the curve and obtain
its vector representation. Then uniform sampling of a total of 1484 curve points
and the quadratic B-spline blending function (order k = 3) are employed to
estimate 100 control points. Then we mark these control points and construct
a fingerprinted “Swan” curve as shown in Figure 1(b). By comparing it with
the original curve in Figure 1(a), we can see that they are visually identical.
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Based on the assumption and the detection method discussed in Section 2.2,
we obtain the detection statistic of 12.75 when correlating the fingerprinted
“Swan” curve with the true user’s fingerprint sequence and very small statistic
values when with innocent users, as shown in Figure 1(c). This suggests that the
embedded fingerprint is identified with high confidence.
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Fig. 1. Fingerprinting a hand-drawn “Swan” curve: (a) the original curve, (b) the
fingerprinted curve, (c) Z statistics

3 Robust Fingerprint Detection

The set of test sample points (p̃x, p̃y) assumed in Section 2.2 is not always
available to a detector, especially when a test curve undergoes geometric trans-
formations (such as rotation, translation, and scaling), vector/raster conversion,
and/or is scanned from a printed hard copy. There must be a pre-processing
registration step preceding the basic fingerprint detection module to align the
test curve with the original one. In order to improve the accuracy and efficiency
of the registration, an automated registration is desirable over a manual regis-
tration. With the affine invariance property, B-splines have been utilized in a
few existing curve alignment works. In a recent method employing a super-curve
[17], two affine-related curves are superimposed with each other in a single frame
and then this combined super-curve is fitted by a single B-spline. Through min-
imizing the B-spline fitting error, both transform parameters and control points
of the fitting B-spline can be estimated simultaneously. Since neither integration
nor differentiation is needed, this method is robust to noise and will serve as a
building block in our work.

Another problem related to the previous assumption is the inherent non-
uniqueness of B-spline control points, which refers to the fact that a curve can
be well approximated by different sets of B-spline control points. With a differ-
ent time assignment or a different set of sample points, we may induce a quite
different set of control points that can still accurately describe the same curve.
It is possible for the differences between two sets of unmarked control points to
be much larger than the embedded fingerprint sequence. Therefore, if we cannot
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find from a test curve a set of control points corresponding to the one used in the
embedding, we may not be able to detect the fingerprint sequence. Considering
the one-to-one relationship between sample points (including their time assign-
ments {sj}) and control points, we try to find the set of sample points on a test
curve that corresponds to the set of sample points used in the embedding. We
shall refer to this problem as the point correspondence problem. As we shall see,
the non-uniqueness issue of B-spline control points can be addressed through
finding the point correspondence.

3.1 Problem Formulation

We now formulate the curve registration and point correspondence problem in
the context of fingerprint detection.

We use “View-I” to refer to the geometric setup of the original unmarked
curve and “View-II” the setup of the test curve. Thus we can register the two
curves by transforming the test curve from “View-II” to “View-I”, or transform-
ing the original curve from “View-I” to “View-II”. We focus on registration under
the affine transformations, which can represent combinations of scaling, rotation,
translation, and shearing. These are common geometric transformations and can
well model common scenarios in printing-and-scanning.

We call two points (x, y) and (x̃, ỹ) affine related if
 x̃

ỹ
1


 =


a11 a12 a13

a21 a22 a23
0 0 1





x

y
1


 =


 aT

x

aT
y

0 0 1





x

y
1


 = A


x

y
1


 , (8)

where {aij} are parameters representing the collective effect of scaling, rotation,
translation, and shearing. These transform parameters can be represented by
two column vectors ax = [a11 a12 a13]T and ay = [a21 a22 a23]T or by a single
matrix A. Similarly, the inverse transformation can be represented by

x
y
1


 = A−1


 x̃

ỹ
1


 �

=


 gT

x

gT
y

0 0 1





 x̃

ỹ
1


 (9)

The original curve available to the detector in fingerprinting applications can
be a raster curve or a vector curve. The detector also knows the original set
of sample points (px,py) that is used for estimating the set of control points
upon which spread spectrum embedding is to be applied. In addition to possible
affine transformations between the original and the test curve, the correct point
correspondence information may not always be available, i.e., the set of test
sample points (p̃x, p̃y) assumed in Section 2.2 is absent. This is especially the
case after a fingerprinted curve goes through vector-raster conversions and/or
printing-and-scanning. Under this situation, not only transform parameters for
the curve alignment but also the point correspondence must be estimated in
order to locate the fingerprinted control points successfully. The test curve can
be a vector curve with sampled curve points (ṽx, ṽy) or a raster curve with pixel
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coordinates (r̃x, r̃y). As a vector curve can be rendered as a raster curve through
interpolation, we consider that the original and the test curve are represented in
raster format and formulate the problem as:

Given an original raster curve with a set of sample points (px,py) and a
test raster curve (r̃x, r̃y), we register the test curve with the original curve and
extract the control points of the test curve. Both transform parameters (ax,ay)
(or equivalently (gx,gy)) and a set of sample points on the test curve (p̃x, p̃y)
corresponding to the one used in the fingerprint embedding must be found from
the test raster curve.

3.2 Iterative Alignment-Minimization (IAM) Algorithm

To align the test curve with the original curve and in the mean time identify the
point correspondence of the sample points, we develop an Iterative Alignment-
Minimization (IAM) algorithm. The IAM algorithm is an iterative algorithm
consisting of three main steps. We first obtain an initial estimation of the test
sample points. With the estimated point correspondence, we then perform “su-
per” curve alignment to estimate both the transform parameters and the control
points of the test curve. With the estimated transform parameters, we refine the
estimation of point correspondence through a nearest-neighbor rule.

Step-1 Initial Estimation of Sample Points on the Test Curve: We initialize the
sample points (p̃(1)

x , p̃(1)
y ) on the test curve using the following simple estimator.

Let N and Ñ be the number of points on the original raster curve and on the
test raster curve, respectively. From the known indices of the original curve’s
m + 1 sample points J = [j0, j1, j2, . . . , jm], where j0 < j1 < j2 < . . . < jm are
integers ranging from 0 to N − 1, we can estimate indices of the test curve’s
m+1 sample points by J̃ = round

(
Ñ−1
N−1 · J

)
. Using this estimated index vector

J̃, we can identify the corresponding sample points from the test curve and take
them as the initial estimate.

Step-2 Curve Alignment with the Estimated Sample Points: Given the estimated
point correspondence and the corresponding sample points (p̃(i)

x , p̃(i)
y ) for the

test curve in the ith iteration, we apply the curve alignment method in [17]
to estimate the transform parameters and the control points of the test curve.
More specifically, let the transform parameters from View-I (the original curve)
to View-II (the test curve) be (a(i)

x ,a(i)
y ). The sample points on the test curve

can be transformed back to View-I by (g(i)
x ,g(i)

y ). We then fit these transformed
test sample points as well as the original sample points with a single B-spline
curve (referred to as a “super-curve” in [17]) and search for both the transform
parameters (ĝ(i)

x , ĝ(i)
y ) and the B-spline control points (ĉ(i)x , ĉ(i)y ) to minimize the

fitting error

f(ĉ(i)x , ĉ(i)y , ĝ(i)
x , ĝ(i)

y )=
∥∥∥∥
[
B
B

]
ĉ(i)x −

[
px

P̃(i)ĝ(i)
x

]∥∥∥∥
2

+
∥∥∥∥
[
B
B

]
ĉ(i)y −

[
py

P̃(i)ĝ(i)
y

]∥∥∥∥
2

, (10)
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where P̃(i) �
= [ p̃(i)

x p̃(i)
y 1 ] and 1 is a column vector with all 1′s. The partial

derivatives of the fitting error function with respect to ĝ(i)
x , ĝ(i)

y , ĉ(i)x , and ĉ(i)y

being zero is the necessary condition for the solution to this optimization prob-
lem. Thus we obtain an estimate of the transform parameters and the B-spline
control points as: {

ĝ(i)
x = C(i)D(i)px, ĝ(i)

y = C(i)D(i)py,

ĉ(i)x = D(i)px, ĉ(i)y = D(i)py

,

where




C(i) �
=

(
P̃(i)T P̃(i)

)†
P̃(i)T B

D(i) �
=

(
2BT B − BT P̃(i)C(i)

)†
BT

0

. (11)

The estimated control points (ĉ(i)x , ĉ(i)y ) can then be used to estimate the em-
bedded fingerprint sequence and further compute the detection statistic Z(i), as
described in Section 2.2.

Step-3 Refinement of Sample Point Estimation on the Test Curve: Given the
estimated transform parameters (ĝ(i)

x , ĝ(i)
y ), we align the test raster curve (r̃x, r̃y)

with the original curve by transforming it to View-I. As the fingerprinted sample
points (B(cx + αwx),B(cy + αwy)) are located at the neighborhood of their
corresponding unmarked version (Bcx,Bcy), we apply a nearest neighbor rule
to get a refined estimation of the test curve’s sample points. More specifically,
for each point of (Bcx,Bcy), we find its closest point from the aligned test raster
curve and then denote the collection of these closest points as (p̃(i+1)

x,I , p̃(i+1)
y,I ).

These nearest neighbors form refined estimates of the test sample points in View-
I and are then transformed with parameters (â(i)

x , â(i)
y ) back to View-II as new

estimates of the test sample points:


p̃(i+1)
x =

[
p̃(i+1)

x,I p̃(i+1)
y,I 1

]
â(i)

x

p̃(i+1)
y =

[
p̃(i+1)

x,I p̃(i+1)
y,I 1

]
â(i)

y

. (12)

After this update, we increase i and go back to Step-2. The iteration will
continue until convergence or for an empirically determined number of times. A
total of 15 rounds of iterations are used in our experiments.

3.3 Detection Example and Robustness Analysis

We present a detection example employing the proposed IAM algorithm on a
curve taken from a topographic map. Shown in Figure 2(a) are the original
curve and a fingerprinted curve undergone vector-raster conversion and some
geometric transformations. After the vector-raster conversion, the point corre-
spondence is no longer directly available from the curve representation and there-
fore our proposed IAM algorithm is desirable. The estimated sample points for
the test curve after one iteration and 15 iterations are shown in Figure 2(b) and
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Figure 2(c), respectively. We can see that the initial estimates deviate from the
true values by a non-trivial amount, while after 15 iterations the estimated values
converge to the true values. We plot the six estimated transform parameters for
each iteration in Figure 2(d), which shows an accurate registration by the pro-
posed IAM algorithm. Upon convergence, we utilize the estimated control points
(ĉ(i)x , ĉ(i)y ) and arrive at a high fingerprint detection statistic value as shown in
Figure 2(e). This suggests the positive identification of the correct fingerprint by
using the proposed IAM algorithm.
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Fig. 2. Detection example using the IAM algorithm: a) the original and the test raster
curve; b) estimated sample points after 1 iteration; c) estimated sample points after
15 iterations; d) estimated transform parameters; e) fingerprint detection statistic

The above example shows that through the IAM algorithm, we can register
the test curve with the original unmarked curve and extract the fingerprinted
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control points with high accuracy. With good estimation of affine transform pa-
rameters, our data embedding method for curves is resilient to combinations of
scaling, rotation, translation, and shearing. The explicit estimation of point cor-
respondence also provides resilience against the vector-raster conversion. With
the robustness resulting from spread spectrum embedding in B-spline control
points and the IAM algorithm, our curve fingerprinting approach can resist a
number of challenging attacks and distortions. The next section will provide
further demonstration.

4 Experimental Results for Map Fingerprinting

We now present experimental results of our curve fingerprinting approach in
the context of tracing and tracking the topographic map, which provides a two-
dimensional representation of the earth’s three-dimensional surface. Vertical el-
evation is shown with contour lines (also known as level lines) to represent the
earth’s surfaces that are of equal altitude. Contour lines in topographic maps
often exhibit a considerable amount of variations and irregularity, prompting the
need of non-uniform sampling of curve points in the parametric modelling of the
contours. In our experiments, the original map is stored in vector format. A set
of discrete, non-uniformly vector points is defined for each contour line and used
as sample points in our tests for estimating control points.

Fingerprinted Topographic Maps. A 1100× 1100 topographic vector map
obtained from http://www.ablesw.com is used in our experiment. Starting with
the original map shown in Figure 3(a), we mark nine curves that are sufficiently
long. A total of 1331 control points are used to carry the fingerprint. We overlay
in Figure 3(b) these nine original and marked curves using solid lines and dotted
lines, respectively. To help illustrate the fidelity of our method, we enlarge a por-
tion of the overlaid image in Figure 3(c). We can see that the fingerprinted map
preserves the geospatial information in the original map up to a high precision.
The perturbation can be adapted to be compliant with cartographic industry
standards and/or the need of specific applications.

Resilience to Collusion and Printing-and-Scanning. To show the robust-
ness of our approach against the combinational attack of collusion and printing-
and-scanning, we first generate a colluded map by averaging coordinates of the
control points from four users’ fingerprinted maps, then render it and print it
out using a HP laser printer, and finally scan back as a binary image by a Canon
scanner with 360dpi resolution. Preprocessing before detection includes a thin-
ning operation to extract one-pixel wide skeletons from the scanned curves that
are usually several-pixel wide after high resolution scanning. By using the pro-
posed IAM algorithm, we get Z statistics of 7.27, 8.91, 6.15, 8.12 for the four
colluders, indicating that the embedded fingerprints from all the four colluders
survive this combinational attack thus the sources of leak for this map can be
identified. This combinational attack also involves vector-raster conversion and
affine transformations, and the result shows the resilience of our method to them.
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Fig. 3. Fingerprinting topographic maps: (a) original map, (b) original and finger-
printed curves overlaid with each other; (c) a zoomed-in view of (b)

Resilience to Point Deletion in Vector and Raster Maps. As traitor
tracing applications usually involve adversaries who have strong incentives to
remove the fingerprints, attackers may delete a certain number of points from a
fingerprinted vector/raster map while keeping similar shapes of its contour lines.
For a fingerprinted vector map, 20% points are randomly chosen and removed
from each fingerprinted curve, while in a fingerprinted raster map 70% points
are randomly chosen and removed. As the point correspondence is corrupted by
the point deletion, we first construct a raster map from the remaining points
by linear interpolation and then apply our IAM algorithm. The detection statis-
tics for these two cases are 11.40 and 15.61, respectively. Thus the embedded
fingerprints survive point deletion applied to both vector maps and raster maps.

5 Extension to Fingerprinting 3D Geospatial Data

In addition to 2D topographic maps, geospatial data are often acquired and
archived as a 3D data set, which includes a set of spatial locations and their
height information. The 3D geospatial data can be represented both as 3D sur-
face and as 2D contours. An example of Monterey Bay region is shown in Figure
4, where the 3D oceanfloor depth data obtained from the U.S. National Geophys-
ical Data Center (NGDC) [18] are rendered in Figure 4(a), and the corresponding
2D topographic map is shown in Figure 4(b). Since the same geospatial data set
can be represented using different dimensionalities, we explore in this section
such fingerprinting method that can allow the fingerprints to be detected from
both the 3D data set and the 2D representation, whichever readily available
to the detector. This can be achieved by extending our proposed fingerprinting
method for curves.

Our basic idea of fingerprinting 3D elevation data is as follows. Given a set of
3D elevation data, we first extract its 2D contours and then embed a watermark
into these contour curves using the method presented earlier in this paper. From
the original 3D elevation data set and the marked 2D contours, we construct
a marked 3D elevation data set. The new issues to be addressed here are how
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(a) (b)

Fig. 4. Elevation map: (a) a 3D geospatial data set, (b) the corresponding 2D contours

to perform 2D contour extraction from a 3D data set and how to construct a
marked 3D elevation data set from marked 2D contours.

The 2D contour extraction starts from performing a planar cut of the eleva-
tion data set at a selected height and then a binary map can be generated by
assigning 1′s to locations of height greater than the given height and 0′s to the
other locations. We apply a robust edge detector, such as the Canny method,
to the binary map to obtain a raster representation of the contour of the given
height. Using the contour following algorithm in [16], we traverse this raster
contour and obtain a vector representation. Non-uniform sampling is employed
to acquire more samples for segments with substantial variations in curvature
and fewer in flat areas. Finally, we use the least-squares approach to estimate
the B-spline control points of the contour.

When constructing a marked 3D data set, we need to generate a set of 3D
elevation data under application-specific constraints, including preserving the
geospatial meanings and ensuring the marked 2D contours can be estimated from
the marked 3D data set with high accuracy. We recall that in the embedding
stage, each original 2D contour is generated from a binary image with 1′s in
locations of height greater than the contour height and 0′s in other locations.
As the marked 2D contour represents a slightly different partition, we need to
modify the height values of the 3D data set for locations around the marked
contour so that the 2D contour generated from this new 3D data set is the same
as the marked 2D contour. To accomplish this, we search for the locations that
have higher elevation in the marked 2D contour map than in the original one, and
modify their height in the 3D data set to be slightly higher. Similar adjustment
is made to the locations with lower elevation in the marked 2D contour map
than before.

To extract fingerprint from a 3D elevation data set, we perform some basic
alignment if necessary. Using the same contour extraction approach as in the
embedding, we then extract from the 3D data set the 2D contours for the same
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elevations as selected in the embedding. Since the extracted contours are in
raster format, we can apply the IAM algorithm as discussed earlier in Section 3
to extract the embedded fingerprint.

We apply the proposed fingerprinting method to the Monterey Bay data set
of Figure 4(a). We hide a fingerprint sequence in three 2D contours of height
-100, -400, and -700, respectively. A total of 484 control points are used for
carrying the fingerprint. To detect fingerprint, we extract the three 2D contours
for the above heights from the fingerprinted 3D data set and obtain a Z detection
statistic of 8.02 through the proposed IAM algorithm. This suggests a successful
fingerprint detection from these three elevation levels.

6 Conclusions

In this paper, we have presented a new data hiding algorithm for curves by
parameterizing a curve using the B-spline model and adding spread spectrum
sequences to curve parameters. In conjunction with the basic embedding and de-
tection techniques, we have proposed an iterative alignment-minimization algo-
rithm to allow for robust fingerprint detection under unknown geometric trans-
formations and in absence of explicit point correspondence. We have demon-
strated the fidelity of our method as well as its robustness against collusion,
affine transformations, vector-raster conversion, printing-and-scanning, and their
combinations. Our work has shown the feasibility of the proposed algorithm in
fingerprinting applications for tracing and tracking topographic maps as well as
writings/drawings from pen-based inputs. We have also extended our curve wa-
termarking method from protecting 2D topographic maps to 3D elevation data
sets. The protection of all of these documents has increasing importance to the
emerging digital operations in government, military, intelligence, and commerce.
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