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ABSTRACT
This paper studies joint security and robustness enhancement of
quantization based data embedding for multimedia authentication
applications. We present analysis showing that through a look-
up table (LUT) of non-trivial run that maps quantized multimedia
features randomly to binary data, the detection error probability
can be considerably smaller than the traditional quantization em-
bedding. We quantify the security strength of LUT embedding
and enhance its robustness through distortion compensation. In-
troducing a joint security and capacity measure, we show that the
proposed distortion compensated LUT embedding provides joint
enhancement of security and robustness over the traditional quan-
tization embedding.

1. INTRODUCTION

Data hiding in multimedia signals has been an active research area
in recent years. One potential application is to use the embedded
data to verify whether or not a multimedia host signal has been
tampered [1]. The data embedding mechanism for these authenti-
cation applications should be secure enough to prevent an adver-
sary from forging the embedded data at his/her will [2]. In addi-
tion, semi-fragileness is often preferred to allow for distinguishing
content changes versus non-content changes. Robustness against
moderate compression is desirable as the multimedia data with au-
thentication watermark embedded in may inevitably go through
lossy compression, such as in the emerging application of building
trustworthy digital cameras [3]. In this paper, we focus on jointly
enhancing the robustness and security of core embedding mecha-
nisms that can be used as building blocks for authentication.

While spread spectrum techniques has been widely used to
embed a small number of bits robustly in multimedia signals [4],
quantization based embedding is more popular for such high-rate
data hiding applications as authentication. A popular technique,
often known as odd-even embedding [5] or dithered modulation [6],
is to choose a quantization step sizeq and round a feature, which
can be a sample or a coefficient of the host signal, to the closest
even multiples ofq to embed a “0” and to odd multiples to em-
bed a “1”. Motivated by Costa’s information theoretical result [7],
distortion compensation has been proposed to be incorporated into
quantization-based embedding [6][8], where the quantization em-
bedding result is combined linearly with the host signal to form a
watermarked signal. Using the optimal compensation factor that
is a function of watermark-to-noise ratio (WNR), distortion com-
pensated version of odd-even embedding can reach higher payload
than the odd-even embedding alone.
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One of the main problems of quantization based embedding
is security. An adversary who knows the embedding algorithm
can change the embedded data at his/her will, which presents con-
cerns of counterfeiting attacks on authentication [2]. There are
three directions to alleviate this security problem. The first way
is to encrypt the data to be embedded using a secure cipher such
as AES and RSA. The second approach is to provide security to
feature extraction, such as deriving features through projecting a
set of samples/coefficients along a direction specified by a key [9].
The third approach is to add security to the embedding mecha-
nism itself to make it difficult for an adversary to embed a specific
bit at his/her will. Since the first and second approaches involve
multiple samples or coefficients, they cannot always allow the lo-
calization of tampered regions to fine scale, which is a desirable
feature for authentication [1][3]. In this paper, we concentrate on
the third approach. More specifically, we propose new enhance-
ment strategies for quantization based embedding, which leads to
joint improvement of security and robustness. It can also be com-
bined with other two approaches to further enhance the security
strength.

Our proposed approach is built on top of a general embedding
technique known as look-up table (LUT) embedding. A pixel-
domain LUT embedding scheme was proposed by Yeung et al. [1],
and was extended to quantization based embedding in a transform
domain in our earlier work [3]. The proprietary look-up table can
be generated from a cryptographic key and add security to embed-
ding. With the same quantization step size, the LUT embedding
generally introduces larger distortion than the traditional odd-even
embedding, making it less popular. In this paper, however, we
present analysis showing that at the same WNR, the probability of
detection error for LUT embedding can be smaller than the odd-
even embedding. We further quantify the security strength of LUT
embedding and analyze the effect of distortion compensation on
it. As will be seen, our proposed distortion compensated LUT
embedding provides joint enhancement of security and robustness
over the traditional quantization embedding.

The paper is organized as the follows. We begin with a gen-
eral formulation of LUT embedding in Section 2. The security
and robustness of LUT embedding are analyzed in Section 3 and
Section 4, respectively. We then propose and analyze distortion
compensated LUT embedding in Section 5 and demonstrate its ca-
pability of joint enhancement of security and robustness.

2. LOOK-UP TABLE (LUT) EMBEDDING

We focus on quantization based embedding in scalar features and
use uniform quantizers in this paper. A proprietary look-up ta-
ble T (·) is generated beforehand. The table maps every possi-
ble quantized feature value randomly to “1” or “0” with a con-



straint that the runs of “1” and “0” are limited in length. To em-
bed a “1” in a feature, the feature is unchanged if the entry of
the table corresponding to that feature is also a “1”. If the en-
try of the table is a “0”, then the feature is changed to its near-
est neighboring values for which the entry is “1”. The embed-
ding of a “0” is similar. For example, we consider a uniform
quantizer with quantization step sizeq = 10 and a look-up ta-
ble{..., T (7q) = 1, T (8q) = 0, T (9q) = 0, T (10q) = 1, ...}. To
embed a “1” to a coefficient “84”, we round it to the nearest mul-
tiples of10 such that the multiple is mapped to “1” by the LUT.
In this case, we found that “70” satisfies this requirement and use
“70” as the watermarked pixel value. Similarly, to embed a “0” in
this pixel, we round it to “80”.

This embedding process can be abstracted into the following
formula, whereX0 is the original feature,Y is the marked one,b
is a bit to be embedded in, andQuant(·) is the quantization oper-
ation:

Y =

{
Quant(X0) if T (Quant(X0)) = b ,
X0 + δ otherwise .

(1)

Here,δ , min|d|{d = Quant(x)−X0 s.t.T (Quant(x)) = b}.
The extraction of the embedded data is simply by looking up the
table: b̂ = T (Quant(Y )), wherêb is the extracted bit.

3. QUANTIFYING SECURITY OF LUT EMBEDDING

During the LUT embedding of Eq. 1, whenT (Quant(X0)) does
not match the bit to be embedded (b), we need to find a nearby
entry in LUT that is mapped tob. As such, the run of “1” and
“0” entries of an LUT need to be constrained to avoid excessive
modification on the feature. We denote the maximum allowable
run of “1” and “0” asr. To analyze security as a function ofr,
we start with the case ofr = 1, which leads to only two possible
tables. One table has “1” for odd entries and “0” for even entries,
and the other has “0” for odd and “1” for even. This is essentially
the odd-even embedding [5] or the dithered modulation embed-
ding [6]. Since there is little uncertainty in the table, unauthorized
persons can easily manipulate the embedded data, and/or change
some feature values while retaining the embedded values. As we
discussed earlier in this paper, the traditional quantization embed-
ding, or equivalently the choice ofr = 1, is not appropriate for
authentication applications if no other security measures, such as
a careful design of what data to embed, are taken.

Whenr is greater than1, the number of LUTs satisfying the
run constraint can be computed through a recursive relation. For
example, a binary LUT can be constructed by equiprobably ini-
tializing each of the first two entries to 0 or 1, and generating the
remaining entries with maximum allowable run of2. Let the num-
ber ofk-entry LUTs that satisfy the above conditions beFk. We
can show thatFk equals to twice theFibonacciseries:Fk+1 =
Fk + Fk−1 for k ≥ 2, andF0 = 2, F1 = 2, F2 = 4. For a binary
LUT with length256 and maximum run of2, the total number of
such LUTs is on the order of1053, which is a significant increase
from only2 possible tables for run1.

We further quantify the uncertainty of LUT embedding by
identifying the generation process of binary LUT as a2r-state
Markov chain illustrated in Fig. 1. We can show that the stationary
probability of both0(i) and1(i) states is

π(0(i)) = π(1(i)) =
2r−i−1

2r − 1
(2)

for i = 1, ..., r, and the entropy rate of the stationary process

{Z1, Z2, ...} in unit of bit is

lim
n→∞

H(Z1, ..., Zn)

n
= lim

n→∞
H(Zn|Zn−1) = 1− 1

2r − 1
. (3)

For example, in the case of maximum allowable runr = 2, the
LUT generation process is a 4-state Markov chain with an entropy
rate of2/3 bit. In contrast, the entropy rate with maximum run of
1 (or equivalently, the odd-even embedding) is0 bit. This indicates
that the uncertainty of LUT has increased significantly with a slight
increase of the maximum allowable run.

It is important to note that the security quantified in this sec-
tion concerns how much uncertainty (against an adversary’s guess)
a basic embedding mechanism can offer to each individual feature.
Zooming into an LUT embedding mechanism that is already suf-
ficiently secure at the individual feature level, another security as-
pect addresses how feasible it is for an adversary to derive the LUT
from a number of watermarked features [2]. Such a threat can be
alleviated by introducing location dependency so that effectively
different LUTs are used for different features. Interested readers
can refer to [2] for details.
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Fig. 1. A Markov chain model for LUT table generation, where the tran-
sition probability is1/2 for solid arrow lines and1 for dash arrow lines.

4. ROBUSTNESS ANALYSIS ON LUT EMBEDDING

Though bringing higher security, the increase in the allowable run
r will inevitably lead to larger embedding distortion when a feature
value of the host signal is not mapped by LUT to the bit to be
embedded. In this section, we analyze the mean squared distortion
introduced by LUT embedding and the probability of detection
error under additive white Gaussian noise (AWGN).

Using the stationary state probability of the Markov Chain
model in Fig. 1, we can show that the overall mean squared distor-
tion incurred by LUT embedding with binary LUT and maximum
allowable runr = 2 is q2/2, whereq is the quantization step
size [10]. This is larger than the MSE distortion ofq2/3 by the
odd-even embedding (or equivalently, LUT embedding with run
1). However, with larger allowable run in LUT, stronger noise that
drags a watermarked feature out of the enforced interval does not
necessarily lead to errors in detection. Therefore, the probability
of detection error can be reduced.

To quantify the robustness in terms of the probability of de-
tection error, we assume that the watermarked feature is atk′q
and that the additive noise follows i.i.d. Gaussian distribution
N (0, σ2) with zero mean and varianceσ2. The probability of de-
tection error under Gaussian noise can be approximated by [10]

P (r=2)
e ≈ 4

3
· Q(q/2σ) =

4

3
· Q(

√
γ/2) (4)

where the Q-functionQ(x) is the tail probability of a Gaussian
random variableN (0, 1). The watermark-to-noise ratio (WNR)



γ is defined as as the ratio of MSE distortion introduced by wa-
termark embedding to that by additional noise, and we haveγ =
q2/2σ2 for the LUT embedding with maximum allowable runr =
2. We have compared with the simulation result for maximum al-
lowable runr = 2 and found that the analytic approximation and
simulation conform very well [10]. In contrast, for LUT with max-
imum run of 1, detection error occurs as soon as the noise is strong
enough to drag the watermarked feature to the quantization inter-
vals next to thek′q interval. The probability of detection errors for
this embedding is

P (r=1)
e ≈ 2×[Q(

√
3γ/2)−Q(

√
3γ·3/2)+Q(

√
3γ·5/2)]. (5)

Using a total of 500,000 simulation points at each WNR rang-
ing from -6dB to +10dB, we compare the probability of detection
error vs. WNR for maximum allowable runr of 1, 2, 3, and in-
finity, respectively. As can be seen from Fig. 2,Pe of maximum
run of2 (solid line) is significantly smaller than run of1 (dot line)
for up to4dB-advantage at low and medium WNR, and is slightly
higher at high WNR. In addition, the further increase of LUT’s run
(dot-dash line and dash line) gives only a small amount of reduc-
tion of Pe at low WNR and much largerPe at medium and high
WNR. This indicates that LUT embedding with maximum allow-
able run of2 can potentially provide higher robustness as well as
higher security than the commonly used quantization embedding
with equivalent run1. In the next section, we explore techniques
that further improve the robustness and capacity of LUT embed-
ding.

5. DISTORTION COMPENSATED LUT EMBEDDING

Motivated by Costa’s information theoretical result [7], distortion
compensation has been proposed and incorporated into quantization-
based embedding [6][8], where the LUT enforced feature is com-
bined linearly with the original feature value to form a watermarked
feature. Using an optimal scaling factor that is a function of WNR,
distortion compensated version of odd-even embedding provides
higher capacity than without compensation [6]. The basic idea be-
hind such improvement is to render more separation between the
watermarked feature values while keeping the MSE distortion in-
troduced by the embedding process unchanged. In this section, we
propose to apply distortion compensation to LUT embedding and
study the impact of distortion compensation on the reliability of
LUT embedding.

Linear Distortion Compensation Let X0 be the original un-
marked feature,X1 the output from LUT embedding alone (with
maximum allowable LUT runr = 2), andY the finally water-
marked feature after distortion compensation. We use a quanti-
zation step size ofq/α to produceX1 in the LUT embedding
step, whereα ∈ (0, 1] is also used as a weighting factor in dis-
tortion compensation:Y = αX1 + (1− α)X0. The overall mean
squared distortion introduced by this distortion compensated em-
bedding remains the same as in the non-compensated version that
uses a quantization step size ofq. One criterion for selecting ofα
is to maximize the following “SNR”:

SNR(r=2) =
2 · (q/α)2

(1− α)2 (q/α)2

2
+ σ2

n

. (6)

Here the “signal” power in the numerator is the mean squared dis-
tance between two neighboring, perfectly enforced feature values

that represent “1” and “0”, respectively; the “noise” power in the
denominator is the mean squared deviation away from a perfectly
enforced feature, where the deviation is introduced by both dis-
tortion compensation and additional noise of varianceσ2

n. Theα

value that maximizes the above SNR can be found asα
(r=2)
opt =

1
/(

1 + 1
WNR

)
.

Robustness and Capacity We quantify the robustness of dif-
ferent embedding settings through their embedding capacities at
a wide range of WNRs. For simplicity, the channel between em-
bedding and detection is modelled as a binary symmetric chan-
nel (BSC) with cross-over probability being the probability of de-
tection errorPe. We compare the BSC embedding capacity of
five cases in Fig. 3, namely, maximum allowable run of2 with
and without distortion compensation, constant run of1 (traditional
odd-even embedding) with and without compensation, and maxi-
mum allowable run of infinity (i.e. no run constraint) with com-
pensation. From the cross marked line to the dash line, we see
that the embedding capacity when maximum allowable run is2
increases significantly for up to4dB-advantage in WNR after ap-
plying distortion compensation. We also observe that when keep-
ing all other conditions identical and only varying the maximum
allowable run of LUT, the increase in allowable run gives higher
embedding capacity in low WNR when no compensation is used
(dot line and cross marks), and a moderately smaller capacity when
distortion compensation is applied (solid line, dash line, and cir-
cles).

The difference in capacity, or equivalently in the probability
of detection errorPe, for different embedding settings is also re-
flected in our proof-of-concept experiments with the512 × 512
Lenna image. One bit is embedded in each pixel through LUT em-
bedding with run constraintr = 2 and linear distortion compensa-
tion. The embedded raw data forms a512× 512 pattern shown in
Fig. 5(a). We have also implemented a embedding scheme using
the same LUT but without compensation, as well as the popular
odd-even embedding with and without compensation. The base
quantization stepq is 3 and the PSNRs of watermarked images
are about42dB. We then add white Gaussian noise to water-
marked images and tailor its strength to give a WNR of0dB in
all tests. The detection errors on uncoded data of512 × 512 bits
are visualized in Fig. 5, from which we can see an improvement
of distortion compensation on reducing the raw bit error rate by
10% (Fig. 5(d)). Channel coding can be applied to provide reli-
able communication at targeted WNRs, as demonstrated in [10].

Joint Security and Capacity Measure The above comparison,
however, concerns mainly the robustness/ capacity and does not
include information about security. To take into account both ca-
pacity and security issues, we define a joint measureJ(H, C) as
a function of the entropy rateH of the embedding mapping and
the embedding capacityC. One simple choice ofJ(·, ·) is a linear
combination of the entropy rate and the embedding capacity under
binary symmetric channel (BSC) assumption for additive noise.
That is,

J = ωHLUT + (1− ω) · CLUT , (7)

whereHLUT is the entropy rate of LUT table given by Eq. 3,
CLUT is the BSC embedding capacity, andω ∈ [0, 1] is a weight-
ing factor to provide a desirable emphasis on security and robust-
ness issues. We plot this joint measure at0dB WNR for maximum
LUT run of 1 and2, respectively, with different weightω and dif-
ferent compensation settings. We see from Fig. 4 that distortion
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Fig. 5. Visualization of raw error patterns under WNR of 0dB by LUT embedding with different settings.

compensated embedding with run constraint of2 (cross marked
line) gives the highestJ until the weightω goes below0.15 and se-
curity is not much concerned, where the joint measure for the tra-
ditional odd-even embedding with distortion compensation (dash
line) becomes higher. This suggests that as long as some level of
security is desired, by slightly increasing the allowable LUT run
from 1 to 2 and by applying distortion compensation, we can pro-
vide joint improvement of security and robustness to quantization
based embedding.

6. CONCLUSIONS

In summary, this paper studies the joint enhancement of security
and robustness for quantization based data embedding. We start
with a general embedding approach that employs a look-up table to
map quantized multimedia features to binary data. We quantify the
security strength of LUT embedding in terms of entropy rate and
have shown that the security is improved significantly with a slight
increase of the allowable LUT run from1 to2. We present analysis
showing that LUT embedding with larger run constraints can have
smaller probability of detection error for up to4dB-advantage in
WNR. We then explore distortion compensation on LUT embed-
ding to further enhance its robustness and provide an additional
advantage of up to4dB in WNR. Through a joint security and ca-
pacity measure, we have shown that our proposed distortion com-
pensated LUT embedding with maximum allowable run of2 offers
joint enhancement of security and robustness over the traditional
quantization embedding that has an equivalent run of1. This joint
enhancement makes the proposed embedding scheme an attractive
building block for authentication applications.
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