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ABSTRACT

Digital fingerprinting is an effective method to identify users who
might try to redistribute multimedia content, such as images and
video. These fingerprints are typically embedded into the con-
tent using watermarking techniques that are designed to be robust
to a variety of attacks. A cheap and effective attack against such
digital fingerprints is collusion, where several differently marked
copies of the same content are averaged or combined to disrupt
the underlying fingerprint. We present a construction of collusion-
resistant fingerprints based upon anti-collusion codes (ACC) and
binary code modulation. ACC have the property that the compo-
sition of any subset ofK or fewer codevectors is unique. Using
this property, we build fingerprints that allow for the identifica-
tion of groups ofK or less colluders. We present a construction of
binary-valued ACC under the logical AND operation using the the-
ory of combinatorial designs. Our code construction requires only
O(
√

n) orthogonal signals to accommodaten users. We demon-
strate the performance of our ACC for fingerprinting multimedia
by identifying colluders through experiments using real images.

1. INTRODUCTION

The development of ubiquitous broadband communication net-
works and multimedia technologies will lead to the creation of a
digital marketplace where a broad range of multimedia content,
such as images, video, audio and speech, will be available. How-
ever, before viable businesses can be established to market content
on these networks, mechanisms must be in place to ensure that
content is used for its intended purpose, and by legitimate users
who have purchased appropriate distribution rights.

In order to control the redistribution of content, digital fin-
gerprinting is used to trace the consumers who use their con-
tent for unintended purposes[1]. These fingerprints can be em-
bedded in multimedia content through a variety of watermarking
techniques[2, 3]. Collusion attacks provide a cost-effective ap-
proach to removing an identifying watermark. One of the simplest
approaches to performing a collusion attack is to average multiple
copies of the content together[4]. Other collusion attacks might in-
volve forming a new content by selecting different pixels or blocks
from the different colluders’ content. By gathering a large enough
coalition of colluders, it is possible to sufficiently attenuate each of
the colluders’ identifying fingerprints and produce a new version
of the content with no detectable fingerprints. It is therefore im-
portant to design fingerprints that resist collusion and identify the
colluders, thereby discouraging attempts at collusion by the users.
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The problem of designing fingerprints that are resistant to col-
lusion has been considered for generic digital data in [1]. Such
generic schemes, however, do not consider the actual marking pro-
cess associated with specific applications and media types. In-
deed, the design of collusion-resistant fingerprinting should con-
sider application-specific issues such as the inherent, special prop-
erties of multimedia data since the fingerprinting process for mul-
timedia involves a chain of events including the selection of the
embedding method and appropriate choice of detection statistics.

In this paper, we investigate the problem of making fingerprints
for multimedia content, such as images and video, that are resis-
tant to collusion attacks by averaging. In Section 2 we describe
multimedia fingerprinting, and introduce the problem of user col-
lusion for a class of additive watermark schemes. In Section 3, we
present our design of anti-collusion codes (ACC), which are used
in conjunction with binary code modulation to construct finger-
prints that are resistant to collusion and able to identify members
of a colluder set. The proposed ACC concept is applicable to all
multimedia data types. For the convenience of discussion, how-
ever, we will use images in our experiments, since the extension to
audio or video is straightforward. Finally, we present conclusions
in Section 4.

2. FINGERPRINTING AND COLLUSION

In this section, we will review additive embedding, where a wa-
termark signal is added to a host signal. Suppose that the host
signal is a vector denoted asx and that we have a family of wa-
termarks{wj} that are fingerprints associated with the different
users who purchase the rights to accessx. Before the watermarks
are added to the host signal, every component of eachwj is scaled
by an appropriate factor that corresponds to an amplification, i.e.
sj(k) = α(k)wj(k), where we refer the thekth component of a
vectorwj by wj(k). Corresponding to each user is a marked ver-
sion of the contenttj = x+ sj , which typically experiences addi-
tional distortionzj that is due to such factors as compression and
attacks made to remove the embedded fingerprints. We will denote
the combination of the noise and the interference of the original
signal bydj = x + zj . We can thus assume that each user will be
given a marked contentyj = sj + dj . Typically, the watermarks
{wj} are chosen to correspond to orthogonal noiselike signals [2],
or are constructed using code modulation and represented using a
basis of orthogonal noiselike signalsui via

wj =

v∑
i=1

bijui, (1)

wherebij ∈ {0, 1} or bij ∈ {±1}[5]. The first case corresponds
to the on-off keying form of code modulation, and makes less effi-



cient usage of energy than the second case, which corresponds to
the antipodal form of code modulation. Therefore, we shall only
considerbij ∈ {±1} for the remainder of the paper.

We can identify a user who is redistributing marked contentyj

by detecting the watermark associated with the user to whomyj

was sold. The detection of additive watermarks can be formulated
as a hypothesis testing problem, where the embedded data is con-
sidered as the signal that is to be detected in the presence of noise.
For the popular spread spectrum embedding [2, 3], the detection
performance can be studied via the following simplified antipodal
model:{

H0 : yi = −si + di (i = 1, ..., N) if b = −1
H1 : yi = +si + di (i = 1, ..., N) if b = +1

(2)

where{si} is a deterministic spreading sequence (often called the
watermark), b is the one bit to be embedded and is used to antipo-
dally modulatesi, di is the total noise, andN is the number of
samples/coefficients to carry the hidden information. In non-blind
detection, where the original source is available,di comes from
the processing and/or attacks; in blind detection,di consists of the
host media as well as distortion from processing and attacks. Ifdi

is modelled as i.i.d. GaussianN (0, σ2
d), the optimal detector is a

(normalized) correlator with a detection statisticsTN given by

TN = yT s/

√
σ2

d · ‖s‖2 (3)

wherey = [y1, ..., yN ]T , s = [s1, ..., sN ]T and‖s‖ is the Eu-
clidean norm of‖s‖. Under the i.i.d. Gaussian assumption fordi,
TN is Gaussian distributed with unit variance and a mean value
E(TN ) = b ·

√
‖s‖2/σ2

d.
The i.i.d. Gaussian noise assumption is critical for the optimal-

ity of a correlator-type detector, but it may not reflect the statistical
characteristics of the actual noise and interference. For example,
the noise and interference in different frequency bands are differ-
ent. In such a scenario, we should first normalize the observations
{yi} by the corresponding noise standard deviation to make the
noise distribution i.i.d. before taking the correlation. That is,

T ′N =

N∑
i=1

yi · si

σ2
di

/

√√√√
N∑

i=1

si
2

σ2
di

. (4)

In this paper, we use the correlator with normalized noise variance
as described in (4).

When two parties who have the same image but fingerprinted
differently come together, they can perform a collusion attack to
generate a new image from the two fingerprinted images so that
the traces of either fingerprint in the new image is attenuated. For
fingerprinting through additive embedding, this can be done by av-
eraging the two fingerprinted imagesyc = λ1y1 + λ2y2 where
λ1 + λ2 = 1, so that the energy of each of the fingerprints is
reduced toλi

2 of the corresponding original and the detection
statistics with respect to thei-th fingerprint is scaled by a factor
of λi. Collusion can be extended to more than two parties. In a
K-colluder averaging-collusion the watermarked content signals
yj are combined according to

∑K

j=1
λjyj . The objective of each

colluder is to avoid being detected, yet remain fair to his fellow
colluders and retain good image quality. We have shown in [6],
that under realistic assumptions about the detection statistics for
each user, choosingλj = 1/K for all j is that most fair choice for
each colluder to avoid detection.

3. CODE MODULATION EMBEDDING AND
ANTI-COLLUSION CODES

In this section we construct fingerprints using code modulation and
appropriately designed codewords to construct a family of finger-
prints that have the ability to identify the members of a colluding
set of users. In code modulation, there arev orthogonal basis sig-
nals{uj}, and information is encoded into a watermark signalwj

via (1) wherebij ∈ {±1}. At the detector side, the determina-
tion of eachbij is done by correlating with theui, and comparing
against a decision threshold. We assign a different bit sequence
{bij} for theith user. We may view the assignment of the bitsbij

for different watermarks in a matrixB, which we call thederived
code matrix, where each column ofB contains aderivedcodevec-
tor for a different user. In the following section, we shall design
a code matrixC with values from{0, 1} and mapC → B with
values{±1} prior to use in code modulation.

In binary code modulation, if we average two watermarks,w1

andw2 corresponding to bit sequencesbj1 and bj2, then when
bj1 6= bj2 the contributions cancel. However, whenbj1 = bj2 the
contributions do not attenuate.

3.1. Anti-Collusion Codes

In this section we design a family of codevectors{cj}whose over-
lap with each other can identify groups of colluding users. A sim-
ilar idea was proposed in [7], where projective geometry was used
to construct such code sequences. As we will explain in this sec-
tion, our proposed code construction makes more efficient usage
of the basis vectors than the codes described in [7].

We assume, when a sequence of watermarks is averaged and
detection is performed, that the detected binary sequence is the
logical AND of the codevectorscj used in constructing the water-
marks. For example, when the watermarks corresponding to the
codevectors(1110) and(1101) are averaged, the output of the de-
tector is(1100). This assumption might not necessarily hold since
the average of many1’s and a few0’s may produce a decision
statistic large enough to pass through the detector as a 1.

We want to design codes such that whenK or fewer users col-
lude, we can identify the colluders. We prefer shorter codes since
longer codes would distribute the fingerprint energy over more ba-
sis vectors, which would lead to a higher error rate in the detec-
tion process. To identify colluders, we first require that there is
some non-zero component remaining in the code when the codes
for theseK colluders are combined. Secondly, we require that
there are no repetitions in the different combinations ofK or
fewer codevectors. We call codes that satisfy these properties anti-
collusion codes.

Definition 1 A binary codeC = {c1, · · · , cn} such that the logi-
cal AND of any subset ofk or fewer codevectors is non-zero and
distinct from the logical AND of any other subset ofk or fewer
codevectors is ak-resilient AND anti-collusion code, or an AND-
ACC code.

We present a(n − 1)-resilient AND-ACC. LetC consist of all
n-bit binary vectors that have only a single0 bit. For example,
whenn = 4, C = {1110, 1101, 1011, 0111}. It is easy to see
whenK ≤ n− 1 of these vectors are combined under AND, that
this combination is unique. This code has cardinalityn, and can
produce at mostn differently watermarked media. It is desirable
to shorten the codelength to squeeze more users into fewer basis



Algorithm: SuspectAlg(Γ)

Φ = 1;
DefineJ to be the set of indices whereΓj = 1 ;
for t = 1 to |J | do

j = J(t) ;
Defineej to be thejth row ofC;
Φ = Φ · ej ;

end

Algorithm 1: Algorithm SuspectAlg(Γ), which determines
the vectorΦ that describes the suspect set.

vectors. We now present a construction of aK-resilient AND-
ACC that requiresO(

√
n) basis vectors forn users.

Our construction uses balanced incomplete block designs
(BIBD)[8]. A (v, k, λ)-BIBD hasn = λ(v2−v)/(k2−k) blocks.
Corresponding to a block design is thev × n incidence matrix
M = (mij) defined by

mij =

{
1 if the ith element belongs to thejth block,
0 otherwise.

If we define the codematrixC as the bit-complement ofM, and
assign the codevectorscj as the columns ofC, then we have a
(k − 1)-resilient AND-ACC[6]. Our codevectors are therefore
v-dimensional, and we are able to accommodaten = λ(v2 −
v)/(k2 − k) users with thesev basis vectors. Assuming that a
BIBD exists, forn users we therefore needv ≈ O(

√
n) basis vec-

tors. In general,(v, k, λ)-BIBDs do not necessarily exist for an
arbitrary choice ofv andk. The existence of different BIBDs, and
techniques for constructing BIBDs can be found in [8].

A useful metric for evaluating the efficiency of an AND-ACC
for a given resiliency is its rateR = v/n, which describes
the amount of basis vectors needed per user. AND-ACCs with
lower rates are better. For(v, k, λ)-BIBD AND-ACC, their rate
is R = (k2 − k)/(λ(v − 1)). By Fisher’s Inequality[8], we also
know thatn ≥ v for a (v, k, λ)-BIBD, and thusR ≤ 1 using the
BIBD construction. In contrast, thek-resilient construction in [7]
has rate much larger than 1, and thus requires more spreading se-
quences (or marking locations) to accommodate the same amount
of users as our scheme. It is possible to use the collusion-secure
code constructions of [1] in conjunction with code modulation for
embedding. However, the construction described in [1] has code-
lengthO(log4 n log2(1/ε)), whereε < 1/n is the decision error
probability. This codelength is considerably large for small er-
ror probabilities and practicaln values. Additionally, for the same
amount of users, the use of code modulation watermarking with an
AND-ACC constructed using a(v, k, 1)-BIBD requiresv orthog-
onal sequences forn = (v2−v)/(k2−k) users, while orthogonal
signaling would requiren sequences.

3.2. Detector Design and Performance

In this section we focus on the detector involved in detecting col-
lusion for binary code modulation. In order for the detector to
determine whetherui, −ui, or neither exists in the test signal
y, the detector correlatesy with ui. If K colluders come to-
gether and average their marked content, then they produce an av-
eraged test signaly whose contribution in theui component is
the average of thebij values for that basis vector. The values of
−1,−(K−2)/K,−(K−4)/K, · · · , (K−4)/K, (K−2)/K, 1
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User 8: 1,-1, 1, 1,1, 1,-1,1,-1,1,1,1,1,1,-1,1
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Fig. 1. Illustration of collusion by averaging two and three images
fingerprinted with ACC codes, respectively. Also presented are the
derived codevectors from a(16, 4, 1) AND-ACC for user 1, 4, and
8 as well as example vectors from two collusion scenarios.

are possible for the averageb of thebij values for a particular basis
vectorui. From these possibilities, it is clear that larger values of
K are undesirable from a detection point-of-view. The separation
between theb = (K − 2)/K andb = 1 hypotheses is critical
to the validity of using AND as the binary operation in design-
ing an ACC. In order to strengthen the validity of the AND as-
sumption for aK-resilient AND-ACC, the separation between the
b = (K − 2)/K andb = 1 hypotheses can be increased by devot-
ing more energyE to the watermark, or by increasing the coding
gain though employing longer orthogonal basis vectors{uj}.

Given that the output of the detector is a vectorΓ =
(Γ1, Γ2, · · · , Γn), we would like to narrow down the entire user
set to a subset of suspect users by usingΓ to determine asuspi-
ciousset from the entire user set. In Algorithm 1, we determine a
vectorΦ = (Φ1, Φ2, · · · , Φn) ∈ {0, 1}n that describes the suspi-
cious set via the location of components whose value are1. Thus,
if Φj = 1, then thejth user is suspected of colluding. In the al-
gorithm, we denote thejth row vector ofC by ej , and use the
fact that the element-wise multiplication “·” of the binary vectors
corresponds to the logical AND operation. The algorithm starts
with Γ andΦ = 1, where1 is then dimensional vector consisting
of all ones. The algorithm then uses the indices whereΓ is equal
to 1, and narrows down the suspicious set through updates toΦ
by performing the AND ofΦ with the rows of the code matrixC
corresponding to indices whereΓ is 1.

3.3. ACC Experiments with Images

In order to demonstrate the performance of our AND-ACC with
code modulation fingerprinting on real images for fingerprinting
users and detecting colluders, we used an additive spread spectrum
watermarking scheme similar to that in [3], where the perceptually
weighted watermark was added to8 × 8 block DCT coefficients.
The detection of the watermark is performed without the knowl-
edge of the host image via the detection statistics as shown in (4).
In the simulations, we used a(16, 4, 1) BIBD [8] to construct our
AND-ACC code. The512× 512 Lenna and Baboon images were
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Fig. 2. Example blind detection statistics values for 2 users’ and
3 users’ collusion with a(16, 4, 1)-BIBD AND-ACC fingerprint.
(top) User 1 and 4 perform averaging, resulting in the output of
the detector as(−1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1). (bot-
tom) User 1, 4, & 8 perform averaging, resulting in the output
of the detector as(0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1).

used as the host signals for the fingerprints. The fingerprinted im-
ages have no visible artifacts with an average PSNR of41.2dB for
Lenna, and33.2dB for Baboon.

Two collusion examples, as well as the three derived code vec-
tors that were assigned to user 1, 4, and 8, and the colluded ver-
sions are presented in Figure 1. The detection statistics of the two
examples are shown in Figure 2. The colluded images are fur-
ther compressed using JPEG with quality factor (QF) 50%. Also
shown in Figure 2 are the thresholds determined from the esti-
mated mean of the detection statisticsE(TN ). We then estimated
the fingerprint codes by thresholding the detection statistics, and
the estimated fingerprint codes are identical to the expected ones.
In Figure 3, we present histograms of theTN statistics from several
collusion cases with different distortions applied to the colluded
Lenna images. We see that there is a clear distinction between the
three decision regions, facilitating the accurate determination of
the AND-ACC codes from colluded images.

4. CONCLUSION

In this paper, we investigated the problem of making fingerprints
for multimedia content that are resistant to collusion attacks. We
proposed anti-collusion codes (ACC) that are used in conjunc-
tion with modulation to fingerprint multimedia sources. Our anti-
collusion codes have the property that the composition of any sub-
set ofK or fewer codevectors is unique, which allows for the iden-
tification of subgroups ofK or fewer colluders. We constructed
binary-valued ACC under the logical AND operation using com-
binatorial designs. Our codes are efficient in that they require only
O(
√

n) orthogonal signals to accommodaten users. For prac-
tical values ofn this is an improvement over prior work on fin-
gerprinting generic digital data. We evaluated our fingerprints on
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Fig. 3. Histograms of blind detection statistics of embedded fin-
gerprints: (top) single fingerprint case, (bottom) 3-colluder case.

real images, and observed that the values of the detection statistics
were well-separated. This behavior allows the detector to accu-
rately determine the colluders by correctly extracting a fingerprint
codevector that corresponds to the colluder set.
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