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Abstract

Multiple issue of instructions occurs in superscalar

and VLIW machines. This paper investigates a third

type of machine design, which combines the advan-

tages of code compatibility as in superscalars and the

absence of complex dependency-checking logic from the

decoder as in VLIW. In this design, a stream of scalar

instructions is executed by the hardware and is si-

multaneously compacted into VLIW-type instructions,

which are then stored in a structure called a shadow

cache. When a shadow cache line contains the in-

structions requested by the fetch unit, the scalar in-

struction stream is preempted and all operations in

the shadow cache line are simultaneously issued and

executed. The mechanism that compacts instructions

is called a �ll unit, and was �rst proposed for dy-

namically compacting microoperations into large exe-

cutable units by Melvin, Shebanow, and Patt in 1988.

We have extended their approach to directly handle

data dependencies, delayed branches, and speculative

execution (using branch prediction). This approach

is evaluated using the MIPS architecture, and a six-

functional-unit machine is found to be 52 to 108%

faster than a single-issue processor for unrecompiled

SPECint92 benchmarks.

Keywords: instruction-level parallelism, multiple

operation issue, superscalar, VLIW.

1 Introduction

Multiple instruction issue is one way to exploit

instruction-level parallelism and improve the perfor-

mance of uniprocessors. Two basic approaches to

multiple issue are superscalar and VLIW. This pa-

per investigates a third approach, namely the use of

a hardware assist to dynamically group instructions

that can be issued together into long words; this al-

lows later fetch of these long words and the multiple

issue of the grouped instructions the next time the

same piece of code is executed.

1.1 Approaches to Multiple Issue

In the superscalar approach, multiple instruction

issue is an implementation feature and not an in-

struction set architecture (ISA) feature. The hard-

ware fetches multiple instructions from a sequential

instruction stream, decodes them in parallel, performs

dynamic scheduling of the ready instructions, and at-

tempts to issue multiple ready instructions every cy-

cle. The advantage of this approach is that it provides

code compatibility between all implementations of a

particular instruction set (i.e., single-issue and di�er-

ent multiple-issue processors).

An ideal superscalar implementation establishes a

large window of instructions among which to look for

exploitable parallelism, and on each cycle performs dy-

namic scheduling (out-of-order execution) within the

established window. Examples of this type of design

can be found in the central window designs of [7] [12]

and the Meta
ow Lightning SPARC design [11]. How-

ever, many current superscalar implementations are

more limited. The IBM Power-2, for example, decodes

a maximum of eight instructions per cycle, dispatches

up to six instruction per cycle, and can perform only a

limited amount of out-of-order issue [13]. Approaches

directed towards high clock rates are often more re-

stricted in window size and order of issue; examples

are the DEC Alpha 21064 and 21164, which decode

two and four instructions per cycle, respectively, and

provide only in-order issue.

In the VLIW approach, the compiler performs

static scheduling and packs independent operations to-

gether as long word instructions. This eliminates the

need for hardware dependency checking and makes a
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Figure 1: Fill unit operation.

tradeo� of building a relativelymore complex compiler

to exploit parallelism on relatively simple hardware.

The VLIW instruction format exactly represents the

functionality and number of resources on a given im-

plementation, and thus code generated by the com-

piler is implementation-dependent; a di�erent com-

piler scheduler and code generator must be provided

for each distinct VLIW implementation. The Multi-


ow TRACE is an example VLIW machine with dif-

ferent models having either 14 or 21 operations placed

together in one VLIW instruction.

Optimizing compilers targeted to speci�c imple-

mentations will continue to be an important part

in gaining maximum performance for given programs

(e.g., numerical codes). Although compiler-processor

synergism has great potential, real-life systems in-

clude local networks of computers that are heteroge-

neous among implementations (even if homogeneous

according to processor brand name) and cannot af-

ford to store a multitude of processor-speci�c ver-

sions of the operating system and important appli-

cations. Rather, the �le server will likely contain

one generically-optimized binary version of each ex-

ecutable program. In this kind of environment, code

compatibility will remain an important economic fact

of life, and VLIW processors will not be a good choice.

1.2 The Fill Unit Approach

A possible third option to provide multiple issue,

in-between the two extremes, is to provide hardware

that monitors the instruction stream and groups mul-

tiple instructions into long-word instructions within

the processor itself. This would allow a sequential in-

struction stream to be fed to the processor, with ex-

ecution of parts of the code accelerated by wide issue

whenever possible. At the same time it would preserve

code compatibility. This is the approach pursued in

this paper.

In 1988, Melvin, Shebanow, and Patt proposed a

hardware assist to compact microoperations gener-

ated from sequentially-fetched instructions into a de-

coded instruction cache [10]. Their design was called

a �ll unit, and it worked as follows: an instruction

prefetch bu�er fetched instructions from memory or

the normal instruction cache, and fed the correspond-

ing microinstructions to the �ll unit, which collected

them together and placed them as a \multinode word"

in a decoded instruction cache. Microoperation ref-

erences were renamed into the address space of the

decoded instruction cache, and the microoperations

from a single instruction could be split across two

multinode words. Filling stopped (i.e., a multinode

word was \�nalized") whenever a branch was encoun-

tered or no empty microoperation slots remained in

the �lled word. The microinstructions in a multin-

ode word could have data dependencies, which would

be resolved later by underlying dynamic scheduling

hardware. The purpose of the �ll unit in the origi-

nal proposal was to give a larger piece of atomic work

to the dynamic scheduler. A checkpoint-repair sys-

tem was used for recovery [6], so that the machine

could back up to the appropriate checkpoint and run

in sequential mode whenever an exception occurred.

Their proposal also included renaming of microarchi-

tecture registers to encode forwarding requirements

within and between multinode words, and it renamed

ISA-level registers to improve performance. Branch

prediction was proposed as a sequencing mechanism,

separate from the �ll unit. No experimental results

were published, however.

This paper extends the �ll unit concept to group-

ing RISC instructions that are independent or depen-

dent in constrained ways into long words for later is-

sue. This is in contrast to the original proposal of

grouping arbitrarily-dependent microoperations into

large units. No renaming is necessary for the in-

struction addresses, and the allowed dependencies are

directly handled using no assumptions of underlying

hardware beyond simple interlocks and cascaded func-

tional units.

The paper is organized as 5 sections. The intro-

duction has reviewed superscalar and VLIW concepts
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Figure 2: Block diagram of a processor with an instruction �ll unit.

and placed the �ll unit concept in perspective. Sec-

tion 2 details the operation of the �ll unit for various

con�gurations of functional units, and Section 3 de-

scribes how the lines of a shadow instruction cache

would be formatted for a particular instruction set

(MIPS), especially in regard to handling the delayed

branch. Section 4 presents an experimental evaluation

of the design, and a summary and conclusions appear

in section 5.

2 An Instruction Fill Unit

As described in the introduction, we use a �ll unit

to collect machine instructions that can always be is-

sued together in the same cycle. In that sense, the

long words formed by the �ll unit resemble VLIW in-

structions.

2.1 General Operation

An instruction �ll unit is a hardware assist that

packs groups of fully or partially decoded sequen-

tial instructions together into a long word, and stores

this instruction in a shadow instruction cache. These

groups are the basis of multiple issue in the proposed

implementation, as opposed to multiple decoding with

hardware dependency checking found in superscalar

processors, and these groups must be guaranteed to

exclude dependencies that would result in incorrect re-

sults. Figure 1 conceptually shows how �lled lines ob-

tained from the shadow instruction cache can improve

performance in a processor with a 5-stage pipeline. In

the right half of the diagram, three instructions are

supplied from the shadow cache and multiply-issued

in cycle 1; this set of instructions preempts the decod-

ing and issue of a single instruction along the normal

scalar path. Note that by storing decoded �elds in the

shadow cache line, there is no need to (fully) repeat

the decoding of instructions fetched from the shadow

cache; however, register fetch must still occur prior to

execution.

Figure 2 gives a block diagram showing the rela-

tionship between the instruction �ll unit and the nor-

mal instruction cache and the functional units. The

�ll unit accepts decoded scalar instructions one-by-one

as they are provided in program order from the nor-

mal instruction cache and decoder. It packs a group

of decoded instructions into a bu�er based on intra-

group data dependencies and resource requirements,

until the line is �nalized (i.e., completed), at which

point the bu�er is written into the shadow cache and

a new line begins to �ll. A shadow cache line entry is

identi�ed by the address of the �rst instruction that

was placed into that line. As depicted in Figure 2, the

next-instruction address is generated by the branch

unit (every cycle) and is sent to the normal instruction

cache and the shadow cache. If the address matches

that of a shadow cache entry, the shadow cache is

given priority over the normal instruction cache and

the (partially-) decoded control lines are supplied di-

rectly from the shadow cache.

next address

sequencing

unit 0

unit n

... immed/addrRdestRsrc2Rsrc1

...immed/addrRdestRsrc2Rsrc1

unit 1

fn code

fn code

fn code

Figure 3: Generic shadow cache line format.

Figure 3 shows the general format of a shadow cache

line in a processor with n functional units. Corre-

sponding to each functional unit, there is a �xed set



of �elds in the wide format. Because a variable num-

ber of decoded instructions can be supplied by a par-

ticular shadow cache line, each line must also include

a next-address �eld and supply it to the branch unit.

(Note that a program-counter-increment value is less

desirable since the required address addition would de-

lay the start of the next instruction fetch.) Filled lines

are stored in the shadow cache only if they have multi-

ple instructions �lled, as it is more storage e�cient to

fetch single instructions from the normal instruction

cache.

An exception that occurs within a group of

multiply-issued instructions will cause the machine to


ush the results of the group, enter a scalar-only exe-

cution mode, and serially reexecute the scalar instruc-

tions in the group up to the point of the exception

[6].

2.2 Baseline Fill Unit Design

The design of a �ll unit and the �lling criteria are

intimately tied to the functional unit con�guration of

the processor. Ideally, each shadow cache line would

have as many instructions as allowed by the number

of functional units in the processor. However, data

dependencies, control dependencies, and resource col-

lisions cause the average number of instructions placed

into a shadow cache line to be less than this ideal. For

explanation purposes, let us �rst consider a processor

with the 6 functional units shown in Figure 4. The

functional units include two load/store units (with

store bu�ers to allow load bypass to the data cache),

two integer units, a branch comparison unit, and a


oating point unit.

fpuint_2int_1 ld/st_2ld/st_1 branch

Figure 4: Basic execution units.

In the baseline �ll unit case, the �nalization (i.e.,

completion) of a shadow cache line occurs in the �ll

unit when a branch or RAW/WAWdependency is en-

countered, or when a resource request is made that

cannot be satis�ed. In �lling a shadow cache line,

two instructions with WAR dependencies are allowed

to issue in the same cycle (as in a VLIW instruction)

since all source registers are read in the second stage of

the pipeline. Additionally, an RAW dependency from

a value-producing instruction to a store instruction is

allowed (assuming the presence of a store bu�er, where

the store can wait until its store value is ready), and

both instructions can be issued in the same cycle. This

arrangement of simultaneous issue of instructions with

WAR dependencies and RAW dependency for store

value is found in the superscalar Motorola 88110 [3].

The dependency checking performed by the �ll

unit does not require the same amount of logic as a

medium- or wide-issue superscalar since the �lling is

done one instruction per cycle, and no reordering is

done. Thus for six units, the �ll unit needs only check

the single incoming instruction against a maximum of

�ve previous instructions. This could result in faster

clock speeds or perhaps fewer pipeline stages than that

of a superscalar processor, albeit with slightly reduced

average issue rate.

Since the �ll unit examines each scalar instruction

as it attempts to �ll a shadow cache line, the use of

register �le read ports can be carefully managed. That

is, instead of a priority arbitration scheme to assign

register read ports to ready instructions in program

order as necessary in a superscalar (c.f. section 4.4 of

Johnson [7]), ports can be assigned by the �ll unit, and

running out of ports can be a �nalization condition.

However, arbitration logic is still required among the

functional units for access to write-back buses.

In this work, we omit register renaming since it

would likely require an additional pipeline stage. We

view this as a tradeo� between more complicated logic

in the processor and the extra space needed for the

shadow cache.

The next-instruction-address �elds chain together a

set of multiple-issue groups of instructions. If there is

no branch or control-changing instruction in a wide

instruction, this �eld is set to the address of the

�rst instruction that was not �lled into the line. A

branch is encoded in the shadow cache line by two

separate �elds: a condition and a branch address.

When the last instruction to be �lled is a conditional

branch, the next-instruction address �eld serves as

the branch-untaken next-instruction address and the

branch-address �eld serves as the branch-taken next-

instruction address. When the last instruction to be

�lled is an unconditional branch, the branch-address

�eld is unused and the branch target address is placed

in the next-instruction address �eld.

Branching to an instruction within a previously

�lled line presents no logical problems. Since the

shadow cache has no line with that starting address,

the fetch will be made from the normal instruction

cache, and a new �ll line will start at the branch tar-

get. Because the same instructions at the branch tar-

get will appear twice in the shadow cache, the shadow

cache tends to become somewhat less storage e�cient.

Similarly, if both the original �lled line and the newly



�lled line both are �nalized by the same branch, a

branch prediction scheme (e.g., a branch history table)

that uses the scalar addresses of branch instructions

and the starting addresses of branch-�nalized shadow

cache lines will now have multiple entries. We believe

these e�ects to be minor since all a�ected lines must

end at least by the next branch.

Note that self-modifying code is not well supported.

A software coherency scheme for the normal instruc-

tion cache can invalidate the addresses of newly-

written instructions individually, but these invalidated

words might be packed into parts of several �lled lines

in the shadow cache. A method to determine an inval-

idate hit in the shadow cache requires that the address

range of each line be checked. Since this is expensive,

the approach chosen is to instead invalidate the entire

shadow cache prior to execution of any self-modi�ed

code.

Because the two load/store units are sequentially

assigned instructions in the shadow cache line, address

collisions can be handled by forwarding logic for RAW

and priority logic for WAW. A WAR collision is more

problematic but can be handled by a bus lock for a

read-modify-write. A page fault by one of the refer-

ences results in OS invocation, but the shadow cache

line itself can be refetched and retried after the fault

is handled.

2.3 Extended Fill Unit Designs

Initial experiments with the baseline �ll unit de-

sign indicated that shadow cache lines were �nalized

too quickly on general-purpose codes due to RAW

dependencies among integer instructions. An impor-

tant design technique in increasing the performance

of general-purpose codes is the use of compound func-

tional units such as the cascaded half-cycle integer

ALUs (as done in the triple-issue TI SuperSPARC [2])

and fused 3-operand functional units [9]. (Special han-

dling of dependent integer instructions is also an im-

portant part of the MIPS R4000 superpipeline design,

where an ALU result can be produced every internal

cycle [8].) A compound integer functional unit does

not appear to impose cycle time limitations and al-

lows dependent integer instructions to be issued from

a shadow cache line in the same cycle.

Figure 5 shows the six basic execution units with

a half-cycle integer ALU cascaded above the second

integer ALU, the branch comparison unit, and the

load/store units. (The cascaded units are conceptu-

ally identical to fused multiple-operand units.) For

the second integer instruction, the source register read

port speci�ers must be extended by one bit each to

provide a 
ag that indicates whether they should be

half-cycle

half-cycle int_1

fpu

int_2 ld/st_1 ld/st_2 branch

Figure 5: Bypass paths for cascaded execution units.

obtained from the register �le or forwarded from the

�rst integer execution unit. The branch condition test

and the load/store address calculation can also have

RAW dependencies from the �rst integer unit.

With regards to register �le read ports, the for-

warding requirements of dependent instructions will

be recognized by the �ll unit and read ports need not

be assigned in these instances. Thus, it becomes less

likely that a shadow cache line will be �nalized due to

lack of register �le read ports.

half-cycle

fpu

half-cycle int_3

int_1

ld/st_1 ld/st_2 branch

int_2

Figure 6: Bypass paths with three integer units.

Figure 6 shows a third integer ALU, which allows

two integer results to be calculated in the �rst half-

cycle and then used by the other units. Since for-

warding can occur from either int 1 or int 2, this adds

a second bit to each forwarding 
ag.

Branch prediction using a branch address cache can

be applied to any of these functional unit con�gura-

tions to provide speculative execution. The predicted

address is determined in parallel with instruction fetch

and is applied to the shadow cache as well as the nor-

mal instruction cache. Loops can be well exploited by

the �ll unit design. However, recovery must be un-

dertaken whenever a misprediction is made and will

require one or more cycles to 
ush speculative results

and possibly several cycles to execute in scalar mode

up to and past the mispredicted branch.

3 A Case Study for the MIPS Archi-

tecture

This section determines a speci�c layout of a

shadow cache line and required �lling procedures by

examining the MIPS architecture [8]. This demon-

strates that binary compatibility can be achieved

without requiring a full superscalar implementation.



3.1 MIPS Architecture

The MIPS architecture is representative of the class

of streamlined architectures that have emerged re-

cently; other architectures in this class have very sim-

ilar traits [5]. The MIPS ISA only permits memory

references in load/store instructions and de�nes 32 in-

teger registers and 16 
oating point registers. An im-

portant aspect of the MIPS architecture is the one

cycle delay slot for all control changing instructions

such as branches, jumps, and calls; i.e., the instruc-

tion following the jump or branch is always executed.

Similarly, load instructions have a delay, or latency,

of one cycle before the data being loaded is available

to another instruction. The compiler �lls in the delay

slots of the loads as well as the delayed branches, and

a nop instruction is used whenever a useful instruction

cannot be moved into a given delay slot.

3.2 Finalization on a Delayed Branch

In designing a MIPS-compatible �ll unit, we assume

the six functional units as discussed in the Section 2.2;

so, there are six major �elds and one next instruction

address �eld in each shadow cache line. The line can

be fully or partially decoded. We choose the latter in

this example to achieve storage e�ciency. The func-

tion code �elds are thus sized by the number of op-

erations that can be requested of the particular unit;

that is, the original MIPS instruction is decoded and

then the function request is reencoded for each func-

tion unit. Register �elds are set according to register

�le read port assignments; in this case 8 read ports re-

quire 3 bits of speci�cation. Additionally the second

integer unit, the load/store units, and the branch unit

may have values forwarded from the �rst integer unit.

Thus the port �elds for these units have an extra bit

to indicate forwarding.

The total shadow cache line length for the given

assumptions is 259 bits, and thus requires approxi-

mately 33 bytes per line. For a third integer unit, an

additional 38 bits is added to the shadow cache line

to control the third integer unit along with an addi-

tional 8 bits for extra forwarding 
ags so that the total

length is 305 bits, or approximately 39 bytes.

The architected delay slot for branches in the MIPS

ISA presents a problem. A branch is a �nalization

condition in the designs in Section 2, and the delay

slot instruction must either be �lled in the same line

(essentially as an extra part of the branch) or a new

line should start and contain only the branch and the

delay slot instruction. Figure 7 shows a code template

for a delayed branch and the twomanners of line �lling

just identi�ed.
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-

i+4 G H I

i i+2
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-
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-
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Figure 7: Delayed branch in MIPS.

In Figure 7, the instruction BC j is a conditional

branch to address j, DS is the delay slot instruction,

and the other capital letters represent non-branch in-

structions. The indices indicate instruction addresses.

At the top right of the �gure, the shadow cache lines

are shown where the branch and delay slot instruction

can be included in the �lled line that started with in-

struction E at address i. The branch and delay slot

instruction �nalize that line, and other lines will be

�lled with instructions from the untaken path (i.e, the

line with starting address i+4) and with instructions

from the taken path (i.e, the line with starting address

j). Note that the address i+4 is given in the 30-bit

next-address �eld of the line starting at i and that the

address j is given in the 30-bit branch-target-address

�eld. Dashes represent nops.

The lower right of Figure 7 shows the situation

where the delay slot instruction could not be �lled

into the line starting at address i; thus a new line must

be �lled starting at address i+2 and can contain only

the branch and the delay slot instruction. Note that

since the multiple issue of an instruction pair with a

WAR dependency is allowed, there is no dependency

condition that can prevent a branch and its delay slot

instruction from being �lled in the same line; it is in-

stead a matter of whether there is a functional unit

currently available for the delay slot instruction.

3.3 Filling Past a Delayed Branch

For MIPS programs, scheduling instructions into

branch delay slots is a generic optimization. When

this is combined with short basic blocks, �nalization

of the shadow cache lines can occur too quickly to

take much advantage of wide issue. One alternative

is to retain one branch per shadow cache line but to

widen the line to include the sets of instructions along

both the untaken path and the taken path, similar

to a VLIW tree instruction [1] [4]. Only one set of

instructions will be sent to the functional units, and



the selection will be based on a prediction returned

from a branch prediction cache or a default heuristic.

The underlying rule is that the instructions prior to

the branch, if any, and the delay slot instruction must

appear on both paths.

First int. ALU 2nd int. ALU First load/store

2nd load/store Floating-point next address

First int. ALU 2nd int. ALU First load/store

Branch ...Rs port portRt

2nd load/store Floating-point next address

...

...

...

...Untaken
 part

Taken
 part

fn

Figure 8: MIPS tree-like line format.

Figure 8 shows this type of wide line. In order

to better depict the functionality of the tree-like line,

the branch instruction �elds apart from the target ad-

dress �eld are moved to the top, and the �ve func-

tional unit instruction �elds appear grouped with an

untaken address (i.e., normal next address as if the

branch were untaken), and these �ve instruction �elds

appear again but grouped with a taken address (i.e.,

the next address as if the branch were taken). The

tree-like line length for a two-integer-unit design is 436

bits (55 bytes), and for a three-integer-unit design is

526 bits (66 bytes).

In the normal �lling of a wide line, both parts of

the wide line are �lled with the same instructions up

to a branch. If possible, then the branch is �lled into

the single branch instruction �eld and the delay slot

instruction is �lled into both paths. The path not fol-

lowed has its next address �eld set (i.e., the branch

target address in case of an untaken branch or the

address beyond the delay slot instruction for a taken

branch), while the �ll unit attempts to continue to �ll

instructions along the path followed by the current ex-

ecution. The branch prediction cache is updated and

will later return a taken/untaken predictor to control

which set of instructions will be issued.

If a misprediction has been made, the wrong set of

instructions will have been issued, so the functional

units are 
ushed, the branch prediction cache is up-

dated, and the wide line is reissued but with the al-

ternate path. Since the alternate path may not have

been traversed before, the set of instructions for this

path may only include the instructions prior to the

branch, if any, the branch, and the delay slot instruc-

tion. Thus, the �ll unit can only issue up to the delay

slot, but if the next instruction fetch occurs from the

normal instruction cache, the �ll unit backs up and

attempts to continue �lling the tree-like line with in-

structions from this new path. (If the shadow cache

returns a wide line from this alternate path, then the

�lled record of a previous visit is available and multi-

ple issue can occur without further �lling.) Therefore,

in the best case, there is a one cycle misprediction

penalty and the machine continues in wide issue mode,

rather than reverting to scalar mode for multiple cy-

cles after the misprediction.

Figure 9 shows �lled lines for the same code tem-

plate as in Figure 7. The shadow cache line at the top

right contains instructions from prior to the branch

and along both paths (i.e., both paths have been vis-

ited previously); this corresponds to the dotted por-

tion of the code template. Alternatively, if the delay

slot instruction could not be �lled along with branch, a

second line is started and can include instructions from

farther along each path (i.e., the lower right shadow

cache lines in the diagram, again assuming that both

paths had been previously visited).

4 Experimental Results

The previous sections described the �ll unit and its

design. In this section, we present the results of an

empirical study of the �ll unit using the MIPS archi-

tecture.

4.1 Simulation Tool, Benchmarks, and

Performance Metrics

All data reported in this paper are gathered with

a simulator that accepts programs compiled for a

MIPS-based DECstation and simulates their execu-

tion, keeping track of relevant information on a cycle-

by-cycle basis. System calls made by the simulated

programs are handled with the help of traps to the op-

erating system. The collected results therefore exclude

the code executed during system calls, but include all

other code portions, including the library routines.

For benchmarks, we use the integer programs of the

SPEC '92 suite. This is because we want to investi-

gate speedups for general-purpose codes representa-

tive of the heterogeneous local area network that we

described in the introduction. Data is presented for

the following 6 benchmark programs: compress with

input �le in, eqntott, espresso with input �le bca, gcc

with input �le stmt.i, sc with input �les test.start and

loada1, and xlisp with input �le li-input.lsp, which are

integer-intensive programs written in C. The programs

were compiled using the MIPS C compiler using the

optimization 
ags as distributed in the SPEC bench-

mark make�les. All benchmarks were simulated to

completion.
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Figure 9: Filling a tree-like line.

For measuring performance, execution time is the

sole metric that can accurately measure the perfor-

mance of an integrated software-hardware computer

system. Metrics such as instruction issue rate and

instruction completion rate, are not very accurate in

general because a compiler may have introduced many

redundant operations. However, since the �ll unit is

a hardware assist, no software modi�cations are per-

formed and the same instruction stream must be exe-

cuted regardless of using a scalar design or the �ll unit

design. Thus the metric of average IPC (instructions

per cycle) is appropriate and execution time directly

scales with it.

All our studies are carried out with code compiled

for a single-issue processor (MIPS R3000). The impli-

cations of this decision are: (i) no �ll unit-speci�c op-

timizations were performed on the code, and (ii) the

code is scheduled for a single-issue processor, which

can have serious implications on �ll unit performance.

In that sense, the performance results presented here

could be viewed as pessimistic.

4.2 Simulated IPC values

Table 1 shows the results of simulating the

SPECint92 benchmark programs using a MIPS-

compatible design with actual functional unit laten-

cies, two-cycle loads, target prediction with one-cycle

delay for incorrect predictions, 100% instruction and

data cache hit rates, and 64k-entry shadow cache. The

branch prediction method is the two-level adaptive

scheme of Yeh and Patt [14] where the �rst-level ta-

ble has 16k entries and a pattern size of six bits; the

second-level table uses 3-bit saturating counters.

The �rst column of numbers represents the IPC of

a scalar processor without counting any nops that are

executed in the delay slots (counting these nops would

allow the scalar processor to achieve its ideal of 1.0

IPC, but the �ll unit results would be similarly in-


ated, e.g., compress would achieve an IPC of almost

3). The subsequent columns represent the di�erent

�ll-unit designs discussed in Sections 2 and 3.

The second column of numbers in the table, la-

beled \Baseline", is the baseline �ll unit, described

in Section 2.2, that has a maximum of six instruc-

tions per cycle. Even though WAR and RAW-store

dependencies are allowed, other data and control de-

pendencies limit the �lling e�ectiveness for the base-

line design. Moreover, the performance of this and all

other �ll unit designs is governed by the loop struc-

ture of the benchmark. That is, code that is executed

once and only once will have an IPC corresponding

to scalar execution only. Code that is executed in a

loop will be accelerated on the second and subsequent

executions by the multiple issue capability provided

by the shadow cache. From the benchmarks, eqntott

apparently has the best loop e�ect and receives a 27%

speedup.

The next three columns of numbers represent cu-

mulative extensions to the baseline design but all use

the simple line format; these designs correspond to

the discussions in Section 2.3. In the third column

of numbers, labeled \Dep. Issue", the simultaneous

issue of dependent pairs of integer instructions is al-

lowed and includes the calculation and use of store ad-

dresses. This signi�cantly improves the performance

of espresso and gcc, but actually decreases the IPC of

eqntott. This decrease appears to be the result of a

slightly reduced target prediction accuracy.

The fourth column of numbers, labeled \+Dep.

Load Addr.", represents a design in which the de-

pendent issue includes calculation and use of load ad-

dresses. The �fth column of numbers, labeled \+3rd

Int. Unit", comes from the simulation of the seven-

unit design that has a third integer unit (c.f. Figure 6).

The compress and gcc benchmarks reach their maxi-

mum speedup with three integer units, at 93% and

75% respectively.

The �nal column of numbers is a two-integer-unit,

dependent-issue design (building on the design re-

ported in the fourth column of numbers) in which the

line has been extended to include instructions from

both paths of a branch. This corresponds to the design



Program Scalar Baseline +Dep. Issue +Dep. Load Addr. +3rd Int. Unit Tree-like Line

compress
0.89 1.07 1.15 1.59 1.72 1.56

espresso
0.87 0.99 1.15 1.23 1.30 1.32

eqntott
0.85 1.08 1.05 1.06 1.15 1.81

gcc (cc1)
0.87 1.05 1.22 1.27 1.52 1.35

sc
0.83 0.99 1.09 1.11 1.13 1.41

xlisp
0.79 0.97 1.00 1.00 1.01 1.30

Table 1: Simulated IPC for Perfect I and D Caches.

in Section 3.2. The four benchmarks, espresso, eqn-

tott, sc, and xlisp, achieve their maximum speedups

for this design, at 52%, 112%, 70%, and 65%, respec-

tively. Eqntott especially exploits the tree-like line

design, while compress and gcc appear to need a third

integer unit to obtain best performance.

Next, let us look at the results with �nite instruc-

tion and data caches, and di�erent shadow cache sizes.

Table 2 shows the results with 128k-byte instruction

and data caches, and for shadow cache size varying

from 2k entries to 64k entries. The functional unit

con�guration and shadow cache line design are same

as those of the last column of Table 1; each shadow

cache entry is 55 bytes wide. The �rst column gives

the benchmarks, and subsequent columns give the IPC

and shadow cache miss rate obtained for the di�erent

shadow cache sizes. It can be seen that the shadow

cache has a high hit ratio even when it has only 2k

entries (110k bytes in total size). When the number

of shadow cache entries is increased to 32k, all pro-

grams except gcc have negligible shadow cache miss

ratios.

5 Conclusions and Future ork

We have taken the idea of a �ll unit, originally pro-

posed by Melvin, Shebanow, and Patt, and applied it

to the multiple issue of RISC instructions. In com-

parison to the original proposal, we have investigated

the e�ect of issuing multiple dependent instructions

using cascaded ALUs (or fused functional units), pro-

posed a tree-like wide shadow cache line to handle

delayed branches with minimal misprediction penalty,

and used the normal instruction cache for any cases of

single issue to increase the utilization of the shadow

cache. We have chosen in the current work to omit

renaming.

In comparison to current superscalar processor

design, the �ll unit has no need for complicated

dependency-checking logic in the decoder to examine

a large number of instructions each cycle, and there

is no need for time- or transistor-consuming register

�le read port arbitration. The tradeo� for this is a

large on-chip auxiliary memory structure, namely the

shadow cache, and the logic necessary for the �ll unit.

Lines in the shadow cache can start at any instruction

address and each line will contain multiple instruc-

tions. The possibility of overlapped lines exists but

this presents no logical problems in instruction fetch-

ing or execution; rather, overlapping merely results in

negligible dilution of the shadow cache and the branch

prediction cache.

The results of our experiments with the MIPS ar-

chitecture allow us to conclude that a �ll unit ap-

proach to the multiple issue of RISC instructions is

pro�table. A design with six functional units has been

shown to speed up eqntott by more than a factor of

two without any recompilation. Other integer bench-

marks saw a speedup between 52% and 93%.

Future work includes further re�nements of �lling

past branches. One possibility is to dynamically elim-

inate branches and contain short `if-then' code se-

quences completely within a shadow cache line. The

instructions in the `then' part would be made condi-

tional, in the same manner that compilers use con-

ditional moves when they are available in the ISA.

For more general control 
ow, multiple speculative

condition and prediction �elds could be added to the

shadow cache line to govern how di�erent sets of in-

structions in the line should be issued. The value of

register renaming as part of the �ll unit and the e�ect

of code scheduling should also be investigated.
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