Goals: Understand how a computer works
 Encapsulate our understanding using appropriate abstractions
 Understand the relationship between assembly and HLL programming
 Understand the interaction between software and hardware
 Understand the basics of computer hardware design

Instructor: Manoj Franklin, AVW 1339, manoj@eng.umd.edu, Ph: 301-405-6712

Meeting Place and Time: CCC 1205; 2:00PM - 3:15PM TuTh

Office Hours: TBA Please make use of the office hours, as I will be in my office during that time. If this time is not convenient, you can email me your questions or set up an appointment.

Teaching Assistant: Inseok Choi (inseok@umd.edu) Off hours: 4-6PM Mon

Additional Grader: Rania Mameesh, rmameesh@eng.umd.edu

Pre-requisites: ENEE 114 or equivalent, ENEE 244 or equivalent

Texts: Required: Manoj Franklin, ENEE 350 Class Notes

Attendance: You are responsible for making up the portions that you missed in class. If you miss a mid-term exam or a final exam without making prior arrangements with me, then a zero will be entered for the missed exam. If you miss an exam because of illness, you have to inform me by phone or email prior to the exam, and submit a doctor’s note confirming the illness.

Grading: The grades will be assigned strictly on the following basis.
 Homeworks 15%
 Project 20%
 Mid-term Exam 1 20%
 Mid-term Exam 2 20%
 Final Exam (cumulative) 25%
 ≥ 90% : guaranteed an A
 ≥ 80% : guaranteed at least a B
≥ 70% : guaranteed at least a C
≥ 60% : guaranteed at least a D

The exam questions will be designed in such a way to test your understanding of the material. Therefore, to score well on the exams, you must try to have a good grasp of the material rather than memorize the material. No cellular phones will be allowed inside the classroom on the day of the exams.

Because it is not possible for the TA to mark all assigned problems in detail in assigning a homework score, solutions will be made available for each homework assignment. You must go over them in detail yourself to correct any errors you may have made that were not caught in the marking process.

The weightage for the exams will not be changed. After an exam (or homework) is graded and returned, you have a 1 week period to request for re-evaluation of your exam (or homework). All questions of the exam will be re-evaluated; that is, no partial re-evaluation is done.

If you have a documented disability and wish to discuss academic accommodations with me, please contact me as soon as possible and not later than Tuesday, February 10.

Also, if any exam is scheduled on a religious holiday that you are compelled to observe, and you must make arrangements to take the exam on a different date, please see me about making these arrangements not later than Tuesday, September 7.

Academic Honesty: The University of Maryland, College Park has a nationally recognized Code of Academic Integrity, administered by the Student Honor Council. This Code sets standards for academic integrity at Maryland for all undergraduate and graduate students. As a student you are responsible for upholding these standards for this course. It is very important for you to be aware of the consequences of cheating, fabrication, facilitation, and plagiarism. For more information on the Code of Academic Integrity or the Student Honor Council, please visit http://www.shc.umd.edu.

Feedback: I would like as much feedback/criticisms as possible from you, as early as possible, so that I can try to improve the way the course is taught. Please feel free to give me any suggestions (anonymously if you wish) that you think could improve the way the course is handled. Please do not hesitate to stop me during lectures and ask questions. Keep in mind that you are not alone. If you have a question, undoubtedly others do too; and we will all benefit from your input.
Syllabus

PART I. OVERVIEW

1. Overview

PART II. SOFTWARE LEVELS

2. High-Level Language Level
3. Assembly Language Level — User Mode
4. Assembly Language Level — Kernel Mode
5. Instruction Set Architecture Level

PART III. HARDWARE LEVELS

6. CPU Microarchitecture
7. Memory System Microarchitecture
8. IO System Microarchitecture
9. Digital Logic Level