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WORST CASE LENGTH OF NEAREST NEIGHBOR TOURS FOR
THE EUCLIDEAN TRAVELING SALESMAN PROBLEM~

L. TASSIULAST

Abstract. The worst case length of a tour for the Euclidean traveling salesman problem pro-
duced by the nearest neighbor (NN) heuristic is studied in this paper. Nearest neighbor tours for a
set of arbitrarily located points in the d-dimensional unit cube are considered. A technique is devel-
oped for bounding the worst case length of a tour. It is based on identifying sequences of coverings
of [0,1]¢. Each covering Pk consists of sets C;, with diameter bounded by the diameter D(Py) of
the covering. For every sequence of coverings a bound is obtained that depends on the cardinality
of the coverings and their diameters. The task of bounding the worst case length of an NN tour is
reduced to finding appropriate sequences of coverings. Using coverings produced by the rectangular
lattice with appropriately shrinking diameter, it is shown that the worst case length of an NN tour
through N points in [0, 1]¢ is bounded by [dvd/(d — 1)|N(d=1)/d 4 o(N{d~1}/d)  For the unit square
the tighter bound 2.482vN + o(V/N) is obtained using regular hexagonal lattice coverings.
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1. Introduction. Consider a set V = {zi1,...,zn} of points in [0,1]%. Let
G = (V,E) be the complete graph with vertex set V. The length of edge (z&,zi) is
the Euclidean distance |zx — z;| between z and z;. Let T(V) be the set of the tours
for graph G. The tours of G are in one-to-one correspondence with the permutations
of the vertices. A tour z;,,Ti,,...,Ziy With starting point z;, will be denoted by
(41,92,...,in). The length of tour t = (i1,%2,...,4n) is equal to the sum of the
lengths of the edges of the tour; that is, '

N
L(t) = Z |Zie — Tiaa s
k=1

where by convention z;,, = ;. The Euclidean traveling salesman problem (TSP)
is to find the minimum length tour through the set of points V.

The TSP is one of the most heavily studied problems of combinatorial optimiza-
tion [4, 8]. In general graphs where the length of the edges may be arbitrary the TSP
was among the first problems shown to be NP-complete (see Karp [7]). The Euclidean
TSP also has been shown to be NP-complete (see Papadimitriou [10]). There has been
a lot of work on heuristics and approximate algorithms with guaranteed performance
[5].

A popular heuristic for the Euclidean TSP is the nearest neighbor (NN) algorithm.
According to this the tour is derived by selecting an arbitrary initial point z;, and
visiting successively from point z;, the point z;,_,, which is the closest to z;,, among
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those that have not been visited yet. Hence any tour t = (31,82, -1 ~) produced by
the NN heuristic satisfies the property

(1) lIiH—l - xikl = j=kI}-11in leik - 1"7;]17 k=1,...,N-1

Also, any tour satisfying (1) can be produced by the NN heuristic if the starting point
is selected accordingly. Any tour that satisfies property (1) will be called an NN tour
throughout the rest of the paper. Denote by NN(V) the set of all NN tours that
correspond to the set of points V. The objective of this paper is to study the worst
case length of an NN tour over all configurations V = {z1,...,zn} of N points in
the d-dimensional unit cube [0, 1]%. This is defined as

Ly= sup max L(t).
vcio,1)4,|V|=N tENNV) )

One way to assess the performance of the NN heuristic is to compare Ly with
the length of the worst case minimum length tour

Py = sup min L(t).
vcio,1j,|v|=N t€T(V)

There are several studies on obtaining bounds for Py. Steele [11] contains a detailed
account of related results. Few [3] obtained an upper bound on Py for the general
d-dimensional case; that is, -

Py < d{2(d — 1)}A-9/2NE-D/E 4 o(N172/),

This was further improved for large d by Moran 9], while Karloff [6] improved the up-
per bound for d = 2 by showing that Py < 0.9841/2v/N + ¢. For the two-dimensional
case, Supowit, Reingold, and Plaisted [12] proved that

(%) Y R — oV < Pu.

The performance of the NN heuristic has been previously studied for the TSP
in general graphs as well as in more special cases of graphs that satisfy certain con-
straints. Johnson and Papadimitriou [5] review related work.

Upper bounds on Ly are obtained in this paper for the Euclidean TSP. From
these bounds and well-known lower bounds on Py it follows that for the Euclidean
TSP in the unit square, the ratio Ly /Py is bounded asymptotically by 2.3095 or,
more precisely, that for every € > 0, there exists N{(e) such that Ly /Py < 2.3095+¢
for N > N(¢). Similar results follow for NN tours in higher dimensions from the
corresponding bounds on Ly in higher dimensions.

The rest of the paper is organized as follows. In section 2 the technique for
bounding Ly using coverings of [0, 1]¢ is presented and the main bounding theorem
is obtained. In section 3 this technique is applied with coverings derived from the
regular rectangular lattice and a bound for NN tours in d dimensions is obtained. In
section 4 the bound is tightened for the unit square using regular hexagonal coverings.
Some further points are discussed in section 3.
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2. The general bound. The diameter D(C) of a subset C of R? is defined as

D(C) = sup |z —yl.
z,y€C
The essential property of an NN tour used in the derivation of the bounds in this

paper is captured in the following lemma.
LEMMA 2.1. For any subset C of R% and tour t = (i1,12,...,iN) produced by the
NN heuristic, there is at most one verteT s, e C such that

‘Iik - xik+1| > D(C)

Proof. By contradiction, assume there are two vertices z,,i,, in C such that
|zi, — Tip,,| > D(C) and |ze,, — zi,.,] > D(C). Without loss of generality assume
that [ < m. Then

o —zo| > min |, — 2y = B — Tl = 120~ e | > DIC) 2 Tim — Tuis
j=l+1,..,n
which contradicts from (1) the assumption that ¢ is an NN tour. o

Lemma 2.1 will be used to derive the main bounding theorem in the following,
after some preliminary definitions.

A covering P of a set A C R® is defined to be any collection of subsets of R4,
P={C:l=1,...,P},CC R% 1 =1,...,P, with the property Uf,Ci 2 A. The
sets that constitute the covering will be called cells of the covering in the following.
The diameter D(P) of the covering P is defined as :

D(P) = max_ D(C).
The cardinality P of covering P will be denoted as |P/. .

Note that for every covering, a bound on an NN tour can be obtained easily using
Lemma 2.1. In any cell there can be at most one point with an adjacent edge of the
tour that has length greater than the cell diameter. Hence, at most |P| edges of an
NN tour will have length larger than the diameter of the covering, while the length
of all the other edges will be smaller than D(P). Therefore,

(2) Ly < (N = [P)D(P) + |PID(A),

where the fact that the length of any edge of an NN tour will be less than D(A) has
been used. By considering sequences of coverings instead of a single covering, bounds
tighter than (2) can be obtained. In the rest of the paper by “covering” we will mean
the covering of [0, 1]%.

Consider sequences of coverings Prm, m = 1,...,M with decreasing diameter,
where

D(Pm) 2 D(Pms1), m=1,...,M - 1.

The following theorem holds.
THEOREM 2.2. The worst case length of an NN tour is bounded as follows:

M
(3) Ly < ND(Pu)+ Y [Prl(D(Pm-1) = D(Pm)) + {P1{(D(A) — D(P1))-

m=2
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Proof. It is shown that for an arbitrary tour t = (i1, ... JIND,
M
(4) L(t) < ND(Pu)+ D [Pml(D(Pm-1) = D(Pm)) + [PLID(A) = D(Py)).
m=2
Consider the increasing sequence of subsets of vertices Vi, m =1,..., M defined as
follows:

Vim = {x‘ik i FS v |Zik - xik+1| > D(Pm)}'

Note that the sets V — Vg, Var — Var—1, V-1 — V-2, -+, Vo — V1, V4 constitute a
partition of V. Therefore, the length of tour t can be written as follows:

(5) M
L(t) = Z |mik — Lieta ] + Z Z imik ~ Tiks | + Z ]xik “Tigyr !

i, €(V—V) m=2 z,, €(Vin—Vim-1) i €Vi

By the definition of the sets V5,

(6) |xik - :I"ik+1| S D(’PM).‘ xik [ (V - VM))
(7) Tiy — Tigga| < D(Pm-1), Tip € Vin — V1), m=2,3,..., M,
(8) | i, = iE73k+1l < D(A), zi, € V1.

By substituting from equafions (6), (7), and (8) to equation (5), we get

M
(9) L(t) < |V = Vu|D(Pu) + D Vin = Vi1l D(Pm1) + VA D(A).

m=2

Since V4, Va,..., Var, V is an increasing sequence of sets (Vi € Viny1), we have [V, —
Vin_1| = |Vin| = [Vin—1l, m =2,..., M, and substituting in (9) we get

M
(10) L) < (V] = V) D(Pa) + Y (V| = [V a D D(Pra—1) + V1| D(A).

m=2

By rearranging the sum in the right-hand side of (10), we get

M
(11) L{t) < [VIDPu) + S [Vl (D(Pm1) = D(Pm)) + VA[(D(4) = D(P1)).
m=2
Note that relationship (11) holds for any TSP tour. The fact that ¢ is an NN tour is
now used to bound |Vi,|. From Lemma 2.1 we have that any cell C of covering Pr,
can contain at most one point i, such that |z;, — Z4,,| > D(C). Therefore, each
cell of P,, can contribute at most one point to the set Vi,; hence

(12) Vinl € |Pm], m=1,..., M.

Substituting in inequality (11) from (12) we get (4). g
In the next two sections it is shown how Theorem 2.2 can be applied to specific
coverings to get bounds on Ly .
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3. Bounds from rectangular lattice coverings. In this section a bound on
Ly is obtained using the coverings implied by the rectangular lattice. Consider the
sequence of coverings Pk, k=1,..., M, where

Pk={Clllz...ldIli=071,--~,k—1, i=1,....,d} 7

and

[ l l 1
Cl;lz...ld={<%+$17%+I2>"'7£+xd>: 0SIi<E7 7,=1,...,d}.

That is, the cells of the covering are d-dimensional cubes with edge length 1/k. By
applying Theorem 2.2 with the sequence of coverings above, we have the following.

THEOREM 3.1. The worst case length of a tour through N points in [0, 1)¢ pro-
duced by the NN heuristic is bounded as follows:

(13)
d—~1 d—1
(d=m+1)Vd 4 1 1
Ly < =M+ VA nd-m)/d L In(NYE— D)+ 1+ 77— — —.
N_'r;—:l d—m i o TN \/&:L:Jld_m

Proof. Note that the diameter of all cells in covering Py is equal to \/E/ k; there-
fore,

Vd
and also
|Pel = P = k%

By applying Theorem 2.2 to this covering, we get

M
1 Jf vd Vi
< _ 7
LN_N\/EM+k§=2:k (k—l k>

1 M pd=2
=NﬂM+ﬂthq+H4>
Using the formula for the sum of a geometric series, we get
1 sl 1
(14) LNSN\/Q—M+\/E;(kd‘2+kd‘3+---+1+m>.

Substituting in (14) using the well-known bounds (see [2]),

n

S sws [ fas

k=m

for the sums in the parentheses in (14), and after some calculations we get

N\/E d-1 \/a

. d—-1
1
(15) Ly<——+ 3y ——M"+In(M-1)- Vay
m=1

d—

- M d—m m+1'

m=1



176 L. TASSIULAS

Inequality (15) holds for all values of M. For M = | N*/4}, inequality (15) becomes

y d-1 d—1
10 b = T]JVV—/\/E—J +m§=:1d—_%wl/ﬂd‘m (N =) VAT

By replacing the floors in (16) such that the inequality remains true, we get

N\/E d-1 \/3 d-1 1
<« YT _____N(d—m)/d Nl/d_ _ s )
(17)LN_N1/d_1+Z=ld_m + In( 1) \/E”;ld_m+1

By using the formula for the sum of a geometric series in the term N Vd/ (N4 1),
we finally get

d—1
(d -m+ 1)\/3 (d~m)/d
< N
m=1
-1
—_ NYe_1)-Vd —_—

a1 T ) \/—ﬂ;d“mﬂ’

and the proof is complete. |

Note that the higher-order term of the bound in Theorem 3.1 is [dVd/
(d—1)]N¢-1/4. The bound in Theorem 2.2 depends on the type of coverings used in
the derivation. By selecting the appropriate type of cells in the coverings, the derived
bound can be tightened, as is shown in the following for the unit square.

) 4. Tighter bounds for the unit square using the regular hexagonal lat-

tice. Consider coverings of the unit square using the hexagonal lattice. The covering
P, consists of hexagons with diameter 2 / /3k, arranged as depicted in Figure 1. Hence
the diameter of the covering is ‘

(18) D(Px) = 2/(V/3k).

By counting the cells in the covering carefully we can verify that

k .
19 Pl < (2k+1)—+3k+1.
(19) [Pl < ( ) 7
Considering the sequence Pi, k=1,..., M of coverings Px as above and using The-
orem 2.2, we can obtain the following.

THEOREM 4.1. The worst case length of a tour through N points in [0, 1]? pro-
duced by the NN heuristic is bounded as follows:

10vV3 +2 3\ /4 4/3+5
2 < 95/23=3/4,/ b | bt VN Bl et B
(20) Ly <2°/73 N+ 373 n i + 3

Proof. Applying Theorem 2.2 with the hexagonal coverings Py, k=1,..., M and
using (18) and (19), we obtain

o L2 1+3V3 2 2
(21)LN§W+Z<%TH2+————3 m+1> <\/§(m—1)—\/§m>+3'

m=2
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2(43K)

F1G. 1. . The unit square covered by a regular hezagonal covering and the cell of the covering
are depicted.

By doing some calculations in (21), we get

oN L 2, 2
LNSW_{—T;%m V3m(m — 1)
M 1+3v3 2m 2

* YT Vim0 2 V=

2

M

m=2
from which we finally get

M M

oON 4 10v3 +2 2
A R Y v s R Dy ey

m=2 =2
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Substituting in (22) using the bounds

S f) < / f(@)da
k=m m-1
for the summations, we get
2N 4 10v3 +2 4
23 Ly ——+-M-2)+ ———I(M-1)+ —+3.
(23) WS e 3 (M=2)+ =M - )+

By selecting M = [(3/4)Y/4V/ N7, equation (23) becomes

2N 4 10v/3 + 2 Vaer . 4
(LN)s N TEYr N/ =5 B(ee VNI-1)+ 7+
24

Replacing the ceilings in equation (24) such that the inequality remains true and after
some calculations, we get

1/4 1/4
10V/3 + 2
Ly < 23/23‘3/4\/N+§ <<§> VN - 1) LlovEer, <(§) \/N> P

(T3/4)*VN1-2)+

3V3 4 v3
(25)
from which the theorem follows after simple calculations. 0
Note that the highest-order term of the bound of Theorem 3.1 for the two-
dimensional case is 2.84v/N, while the highest-order term of the bound of Theorem
4.1 is equal to 2.482V/N.

5. Discussion. A methodology for bounding the length of NN tours in Euclidean
TSPs using coverings of [0, 1]¢ was presented in this paper. The general bound in sec-
tion 2 is proportional to both the diameter of the covering and its cardinality. Hence,
in order to obtain good bounds, it is important to find coverings with small diameter
and as small cardinalities as possible. In two dimensions, hexagonal coverings achieve
a better trade-off between cardinality and diameter than rectangular coverings, and
consequently the bound that was obtained using these coverings in section 4 is better
than the one obtained by using rectangular coverings. In fact, the hexagonal covering
is the one that achieves the optimal trade-off between diameter and cardinality in two
dimensions, as is mentioned in the book of Conway and Sloane [1], where coverings
and their properties are studied extensively.
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