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TABLE I
20-User WEIGHT VECTORS OF LENGTH 15

w1 =(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1), w*) = (0,0,0,0,0,0,0,0,0,0,0,0,0,1,0),

w3 =(0,0,0,0,0,0,0,0,0,0,0,0,-1,1,1),

w® =(0,0,0,0,0,0,0,0,0,0,-1,1,0,0,1),

w* =(0,0,0,0,0,0,0,0,0,0,0,1,0,0,0),

w® =(0,0,0,0,0,0,0,0,0,-1,0,1,0,1,0),

w7 =(0,0,0,0,0,0,0,0,1,~1,-1,1,-1,1,1), ¥ =(0,0,0,0,0,0,0,1,0,0,0,0,0,0,0),

%) =(0,0,0,0,0,0,-1,1,0,0,0,0,0,0,1), w{'” =(0,0,0,0,0,-1,0,1,0,0,0,0,0,1,0),

w1 =(0,0,0,0,1,-1,~1,1,0,0,0,0,~1,1,1),

w13 =(0,0,1,-1,0,0,-1,1,0,0,-1,1,0,0,1),

w12 =(0,0,0,-1,0,0,0,1,0,0,0,1,0,0,0),

w4 =(0,1,0,~1,0,-1,0,1,0,-1,0,1,0,1,0),

w3 = (=1,1,1,~1,1,-1, -1, 1,~1,—1,1,—1,1,1).

Fe7-#=(1,1,21001,01,1,21,0,01).
g=4

15'(4)5T:1:>e4=e§4)=1
Fe-7-194=(0,0,1,0,0,0,1,0,0,0,1,0,0,0, 1).
=3

T =12 e=e =1

4

Fe-7—~13=(0,0,0,0,00,0,0,0,0,0,0,0,0,0)
= ey =¢e; = 0.

Soe3 = eq4 = e5 = € = €5 = €y = €10 = €12 =
e13 = €15 = e1g = e17 = e18 = 1, ex1 = e = 2, and
el = €3 = e7r = ey4 = e = 0. With s; = e; — 1, that
implies 81 = 82 = 87 = 814 = S19 = -1, 511 = S20 = 1, and
S§3 = 84 = S5 = S¢ = Sg = S9 = S10 = S12 = 513 = S15 =

516 = 517 = 513 = 0. Hence, the receiver uniquely identifies that
—&, =&, —87, —C14, —C19, C11, and & are sent from the active
users and the rest of users are idle.

IV. SUMMARY

In this correspondence we use Lindstrom combinatory detecting
set for the construction of a set of spreading sequences for S-CDMA
systems. These spreading sequences can support the number of users
far exceeding the current S-CDMA approaches, and hence improves
the sum rate for S-CDMA systems.
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Scheduling and Performance Limits of
Networks with Constantly Changing Topology

Leandros Tassiulas, Member, IEEE

Abstract— A communication network with time-varying topology is
considered. The network consists of M receivers and .V transmitters
that, in principle, may access every receiver. An underlying network
state process with Markovian statistics is considered that reflects the
physical characteristics of the network affecting the link service capacity.
The transmissions are scheduled dynamically, based on information
about the link capacities and the backlog in the network. The region of
achievable throughputs is characterized. A transmission scheduling policy
is proposed that utilizes current topology state information and achieves
all throughput vectors achievable by any anticipative policy. The changing
topology model applies to networks of Low-Earth Orbit (LEO) satellites,
meteor-burst communication networks, and networks with mobile users.

Index Terms—Low-Earth Orbit (LEO) satellite networks, throughput
analysis, time-varying networks, wireless networks. |

I. INTRODUCTION

In this correspondence we consider a changing topology network
model that captures some essential features of wireless networks with
changing topology, including Low-Earth Orbit (LEO) satellite net-
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_works, terrestrial mobile, and meteor-burst communication systems.
The model is general enough to include networks with multiple nodes
and arbitrary configurations. The transmission capacity of the links
may vary with time in several different fashions. In changing connec-
tivity models, the link is either available to transmit in its full capacity
or unavailable, hence the capacity is a binary process. In general, the
capacity may take one among multiple values. This is the case when
adaptive channel coding is used and the coding rate decreases as the
channel quality deteriorates. The temporal variation of the capacity
is modeled by a hidden Markov chain. More specifically, the link
capacity is a function of the state of the underlying Markov chain
that models the temporal variation of the network.

The focus of the correspondence is on the scheduling and the
throughput of the time-varying topology network. Initially, the effect
of the changing topology is isolated by considering the system with
no exogenous arrivals, and with an infinite supply of packets in
each transmitter. The region of the traffic rates achievable by any
policy is obtained. The case of exogenous arrivals is considered next.
The region of achievable throughputs is characterized. It contains the
throughput vectors achievable by a large class of policies, including
anticipative policies which can rely on the statistics of the topology
process and which may utilize the topology state for scheduling.
A policy is proposed which achieves any achievable throughput. It
schedules the transmissions at slot ¢ based on the backlog at slot
t as well as the transmission quality of the different links. This
policy needs no statistics of the topology or the arrival processes
for scheduling. Furthermore, it is nonanticipative and does not need
full knowledge of the state of the topology.

A queueing system that captures the phenomenon of changing
connectivity in the single-node case was considered by Tassiulas
and Ephremides in [5]. The changing comnectivity was represented
by Bernoulli processes. The system considered here generalizes the
one considered in [5] in the following aspects. First, a network with
arbitrary topology is considered. Second, the topology is represented
by a hidden Markov model instead of an independent and identically
distributed (i.i.d.) process. The cases of periodic connectivity process
(LEO satellite networks) and certain dependent topology processes
arising in meteor-burst networks are included. Third, anticipative
scheduling policies are considered which may base the transmission
scheduling decisions on the knowledge of the future connectivity
pattern. Fourth, link capacities that may take values in a set are
considered. That is, a link is not necessarily in either connected or
disconnected state but it may be in a variety of states that represent
different transmission qualities. Systems where the effect of changing
connectivity arises in a somewhat different context were studied by
Carr and Hajek [1] and Tassiulas and Papavassiliou [6].

The queue length process in the changing connectivity model is a
hidden Markov chain, influenced by the underlying topology process.
Its stability analysis is done by considering the drift of a quadratic
Liapunov function, averaged by the stationary distribution of the
topology process. The drift between consecutive time instances may
be nonnegative for some states of the topology process. If we consider
though the drift between time instances appropriately spaced such that
the topology process reaches its steady state, then only the steady-
state statistics of the topology process matters. Hence it is enough for
stability to study the drift averaged by the stationary distribution of the
topology process. The same approach may turn out to be appropriate
for the stability analysis of systems with Markov modulated arrivals.

The correspondence is organized as follows. The model is specified
in Section 1L In Section III the region of achievable throughputs for
a system with infinite packet supplies in the nodes is obtained. In
Section IV the system is considered with exogenous arrivals, and the
maximum throughput scheduling policy is obtained.
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II. THE CHANGING ToPOLOGY NETWORK

The network consists of N transmitters and M receivers. Each
transmitter may attempt transmission to one of the receivers at each
time instant. The success of the transmission depends on the other
transmission attempts at the same time as well as the topology state of
the network. The topology state includes all the characteristics of the
network that affect the transmission and may change with time. These
may be the connectivity status of the links in networks with changing
connectivity, the transmission rate for links with changing quality,
etc. Other characteristics, not directly related to the transmission
properties, may be included in the topology state. For example, in
networks where the variation of the transmission characteristics has
some periodic structure, the topology state will include the current
state of the transmission characteristics as well as the phase. We
assume that there is a finite number L of possible topology states;
the set of all possible topology states is denoted by S. We consider
slotted time, with slot lengths equal to a packet transmission time. The
topology state may change at the slot boundaries and its value at slot
t is denoted by the variable S(t). The topology process {S(6)}2s
is assumed to be an irreducible (possibly periodic) finite state-space
Markov chain.

The transmission of transmitter 7 to receiver j at slot ¢ is successful
with probability Q:;(t). The time-varying topology is represented by
the variation with time of the probabilities of successful transmission
Q:;(t). These probabilities depend on the topology state as well as
on which transmitters attempt transmission toward which receivers at
each slot. Throughout the correspondence we assume that given the
topology state at time ¢ and the transmission attempts at that slot, the
outcome of the transmission at ¢ is independent of the past topology
states or transmission attempts. The transmission attempts at slot ¢
are denoted by the binary transmission vector

R(t)= (Rij(t):i=1,---,Nj=1,---, M)

where R.;(t) is equal to 1 if transmitter ¢ attempts transmission
to receiver j at that slot and 0 otherwise. One possibility is that
a receiver may be able to listen to only one transmitter at a time,
in which case at most one transmitter should attempt to access a
particular receiver. If the receivers have multireception capabilities,
then it is possible that more than one transmitter may attempt
transmission to the same receiver simultaneously. The set of all
possible transmission vectors is denoted by R. Let Qij:S X R —
[0, 1] be the function that determines the probability of success in the
transmission from i to j at ¢ based on R(t), S(t); that is,

Qi;(t) = Qi;(8(t), R(?))-

The probability of success function captures all the changing topology
features which are relevant for the transmission control. Furthermore,
this formulation has within its scope arbitrary configurations of the
network. If there is no communication link from some transmitter ¢
to receiver j then Q;;(8,7) is equal to zero for every pair 7, 8.

The transmission control policy is the collection of transmission
vectors {R(t)}2,. In general, the R(t)’ s might be random vectors
that take values in R. In the transmission policies of interest, the
transmission vector depends on the system state. The vector R(¢)
may be a function of the backlog and the topology state at ¢, and in
some cases of the future topology states S(t + 1), 5(t + 2),--- as
well, since those are available to the controller in certain applications.
In Section III, the throughput region is characterized for a saturated
system with infinite backlogs. Ergodic policies for which the long-run
average throughput exists are considered. In the study of the system
with exogenous arrivals, only stationary policies are considered. The
restriction to stationary policies does not affect, in any significant
manner, the region of achievable throughput as it will be shown later.
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In the throughput analysis we will see that nothing is gained by
considering policies that make the scheduling decisions based on
information about the future topology states since the throughput
region achieved by nonanticipative policies coincides essentially with
the throughput region achieved by anticipative policies. Before we
proceed to the analysis, we discuss in more detail how the above
model applies to some practical systems.

A. Networks of LEO Satellites

Each satellite is equipped with several transmitters and receivers.
Each transmitter corresponds to one of the NN transmitters in the
model. Similarly, for the receivers. Each transmitter may transmit
only to one receiver at a time. Also each receiver may listen to
one transmitter at a time. In this case, the topology will be more
easily represented by the introduction of the connectivity variables.
Receiver j may listen to transmitter ¢ at slot ¢ if and only if the binary
random variable C;;(t), the connectivity variable between i and j is
equal to 1. At every time slot the connectivity state of the network
is represented by the random vector

C(t) =(Ci(t), i =1,--- -, M).

Because of the periodic orbital movement, the variation of the
distance between any two satellites is periodic. Therefore, the con-
nectivity C;;(t) between any transmitter—receiver pair i—j is periodic
as well. The connectivity vector is also periodic with period the least
common multiple of the periods of Ci;(t) which will be denoted
by T. The connectivity vector incorporates all the relevant topology
information for scheduling. Nevertheless, it does not qualify as a
topology state because it is possible that the same connectivity
states occur several times during a period; therefore, the phase
of the connectivity is needed as well. Let p(t) = tmodT and
S(t) = (C(t),p(t)). The connectivity C(t) and the phase p(t)
constitute a state for the topology process. The state space is

S ={0,1}"™ x {0,---,T — 1}.

The transmission from transmitter 7 to receiver j at ¢ is successful if
Ci;(t) = 1 and 4 is the only transmitter that attempts transmission
to j. Therefore, .

Qii(8) = Ci;(ORi; () [[(1 = Ry@) [J(1 = Ru(®)).

1£4 1#5

A generalization of the satellite network specified above is the case
where the receivers have multireception capabilities. In a CDMA
system, for instance, each receiver may receive successfully more
than one packet in the same slot coming from several transmitters.
The probability of successful reception Q;(t), depends on the
physical positions of the transmitters and receivers, on the transmitters
which attempt transmission to receiver j, as well as on the spread-
spectrum signaling scheme that is used for access and it can take
more than two values in general.

B. Meteor-Burst Communication Networks

Tonized layers from showers of meteorites act as a reflector to the
electromagnetic radiation and make feasible a meteor-burst communi-
cation channel. This channel is available for transmission only during
the period of the meteor bursts which occur at random time instances
and have a random duration. In a packet communication link built
using a meteor-burst channel, a packet transmission is successful only
if it initiates and ends during a meteor-burst period. Several models
have been considered for the distribution of the burst period and the
intermittent periods, including exponential [3] as well as more general
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distributions, those of the hitting times of appropriate Markov chains
[81.

A network built on meteor-burst channels fits in our changing
topology model as follows. The topology state is a vector with one
state variable for each link. This variable represents the evolution
of the availability of the link. Given the state of link ¢ at slot ¢,
the probability of successful transmission is equal to zero if the slot
starts in an intermittent period, or equal to the probability that the
meteor-burst period will end before the end of the slot if the slot starts
during a meteor-burst period. In the case of exponentially distributed
bursts, the state of the channel is binary, indicating only whether
the slot starts during a meteor-burst period or not. For more general
distributions, the topology state will be multivalued.

III. SYSTEM THROUGHPUT REGION

As a first step toward the investigation of the control problem in
the changing topology network, the region of throughputs achievable
by all ergodic policies is characterized in this section. A saturated
system is considered, where an infinite supply of packets is present
in the network at the beginning of time. The transmissions that take
place at slot ¢ as they are determined by the scheduling policy, are
represented by the indicator vector R(t). Due to access constraints
and depending on the topology state, some of these transmissions are
successful and others are not. Let D;;(¢t) be a binary random variable
that is equal to 1 if there is a successful transmission from transmitter
i to receiver j at slot ¢ and to 0 otherwise.

D(t) = (Di(t),i=1,---,N,j=1,---, M)

is the departure vector at time ¢, that is, the indicator vector rep-
resenting the successful transmissions. The time average throughput
up to slot t is
1 £

H(t) =7 ;D(T). (1)
We consider the class of policies G for which the long-run average
throughput exists; that is,

lim H(t)=h as.

t—oo

€3]

where h is a constant vector. Define the throughput region H of the
system to be the set of all throughput vectors achievable by policies in
G. The characterization of H involves some probability distribution
associated with the steady-state behavior of the topology process.

In general, the topology process will be a periodic Markov chain
and its period will be denoted by T'. The state space is partitioned in
the sets S¥,v = 0,1,---,7 — 1 such that

StTr+v)es8’, v=0,1,---,T-1

It is assumed that all the states in S¥ communicate, therefore, each
one of the processes {S”(¢)}i=,

§'(t)=8tT+v), v=0,1,---,T~1

is an aperiodic irreducible Markov chain with state space S” that has
a stationary distribution denoted by p”. Let p be the distribution on
S defined as

1 T—1
p(s) =7 ) p°(s), SES
v=0

This is the stationary distribution of the topology state process. For
notational convenience in the following we denote S(¢tT + v) by
S”(t). The necessary and sufficient condition for a vector A to belong
to 7 is the following.
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C1 There exist nonnegative numbers c,r,8 € S,7 € R such that

S ew<l, s€S ©)
reR
for which we can express the vector h as
h= Zp(s) Z C,,.Q(S,T) )

€S récR

where S is the state space of the topology process, R the set of
possible transmission vectors, and

Qs,r) = (Qis(8,7):i=1,---, N,j=1,---,M).

Note that for every initial distribution of the topology state process,
the distribution of §?(¢) will converge to its stationary distribution.
Hence only the stationary distribution of the topology process affects
the throughput. The coefficients car can be interpreted as the fraction
of time in which transmission vector r is selected by the scheduler,
when the system is in state s. Note also that condition C1 involves
the stationary distribution of S(t) and not the transition probabilities
of the process. The proof of the following proposition is omitted for
brevity.

Proposition 1: A throughput vector k is achievable by a policy in
G, if and only if condition C1 holds.

IV. SCHEDULING WITH LIMITED STATE AND STATISTICS INFORMATION

For any achievable throughput vector h that is a vector satisfying
C1, a simple randomized transmission policy that achieves h can be
easily obtained. Specifically, the transmission vector R is selected
with probability csr When in state S ,assuming r # O. The transmis-
sion vector * = O is selected with probability cos + 1 — Lrer Car
when in state S. In order to compute csr, the stationary distribution
of the topology process is required. Furthermore, the topology states
S(t) should be available to the controller at each slot ¢, since the
transmission probabilities are conditional on the state. In this section,
a policy is presented that achieves any achievable throughput without
knowledge of the topology process statistics. The policy is dynamic
and relies on the queue lengths for scheduling. The topology state
is not needed by the controller; only the probabilities of successful
transmission Qi;(t) at each slot are utilized for scheduling. For
instance, in the case of periodic connectivity processes, the controller
needs to know only the current connectivities and not the phase of
the connectivity process. This is an important aspect of the policy
since in certain cases the topology state of the system is not easily
measurable while the probabilities of success are. Finally, the policy
needs no information on the arrival rates.

The system is considered with exogenous arrivals. At every time
slot ¢ a number of packets A;;(t) arrive at transmitter  to be
transmitted to receiver j. We will assume that the arrival process

{(Ay()i=1,-- N, j=1,--, M)}i=s
is i.i.d. and also
E[A%(t)] = @ij<oo, fori=1,---,N,j=1,---, M.
The arrival rate of traffic at transmitter ¢ for receiver j is
aij = E[Ai;(1)]
and the arrival rate vector is
a=(aij:i=1,---,N,j= 1,---,M).

It is assumed that if there is traffic from transmitter 7 to receiver 7
that is a;; >0, then there is a state & and a transmission vector
such that Q:;(s,r)>0.
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A throughput vector h is considered achievable if “there is a
transmission scheduling policy under which the system is stable when -
the arrival rate vector a is equal to k. Let X,;(t) be the number of
packets waiting at transmitter z to be transmitted to receiver j by the
beginning of slot ¢; let

X(t) = (Xi(t):i=1,--,N,j=1,--, M)

be the corresponding queue length vector and X' = Zf M the state
space. If a;; = 0, then X;;(t) = 0 for all ¢. Define X"(t) =
X (tT +v). The system is defined to be stable if the following holds.

S1 The queue length process {X Y(t)}2, converges in distribu-
tion to some vector X ¥ that is independent of the initial condition
and such that E[XU] <oo forallv=0,1,---, 7~ 1.

Stationary anticipative policies with finite scheduling horizon are
considered, which constitute the class of policies G® defined as
“follows. A stationary policy g belongs to GO if there exists a constant
k? (which may vary from policy to policy) such that the transmission
vector R(t) is independent of the arrival and topology processes
conditionally on X (¢),8(t),S(t +1),---,8(t + k%); that is,

PlAN{R(t) € BYX(),8(2), -, 8(t+ k)]
= P{AIX(),5(t), -, S(t + k)]
. P[R(t) € BIX(8),8(t), -, S(t + k)]

where B is any subset of R and A any event on the probability
space where the arrival and topology processes are defined. Hence
G° contains all policies g at which the transmission vector at time ¢
may be a function of the backlog at ¢ as well as the topology states
up to k9 slots in the future. The following additional condition is
imposed on the policies in G°.

C2 If at time # there are nonempty queues in the system (X (¢) #0)
and for the current state S(t) there is a transmission vector r such
that Q:;(S(t),r) >0 for some i,j such that X;(t)>0, then the
transmission vector R(¢) selected by a policy g € G is such that
OQim (S(t), R(t)) > 0, for some I, m such that Xim(t)>0.

Together with the fact that for every i, j for which there is nonzero
traffic from i to j there are s and r such that Q;(s, r) >0, the
condition C2 guarantees that from any initial state the network will
hit the empty state with probability one under any policy in GP, if the
arrivals are frozen. This property is needed to claim irreducibility of
certain processes in the proof of Proposition 2. Note that the above
condition is a type of nonidling condition imposing that if there are
nonempty queues in the system, the transmission vector should be
selected such that at least one will receive some service. Condition
C2 is satisfied by all policies of interest. Let 7 be the region of
throughput vectors achievable by any policy in G°. We will show
that the necessary and sufficient condition for a vector h to belong
to H is the following.

C3 There exist nonnegative numbers csr, 8 € S, € R, such that

Zcu<1, 8ES %)
reR
for which we can express the vector h as
h=> p(8) Y crQs,7). ©®)

s€S rerR

Proposition 2: 1f the system is stable under some policy in G°
then the arrival rate vector satisfies condition C3.
Proof: The process

{(X(),8(8),- -, 8(t+ k")) }iz

is an irreducible Markov chain for any policy g € G°. Condition S1,
that holds if the system is stable, together with the finiteness of the
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state space of the topology process implies that the process
{(X(t),8(t),---, S(t + k7)) }z

has an honest stationary distribution. Assume that the system starts
with the initial state distributed according to the stationary distribu-
tion. Then the process {X (t), S(t)}2o is stationary. With H(¢) and
D(t) as defined in Section III, we have that the achievable throughput
vector h is

h = E[H(t)] = E[D(t)].

Consider a modification § = {R(#)}32, of policy g = {R(t)}iZ.
where Ri;(t) = Ri;(t) if Xi;(t) # 0 and Ri;(t) = 0if X,;(t) = 0.
Clearly, the evolution of the system is identical under the two
policies. Using this fact and conditioning on S(t), R(t) and the event
{X(t) # 0} successively we get
h = E[D($)] = E[E[D(®)|8(1), B(t)]]

= E[E[D®IS(), R(®)]

=E[E[D(1)|5(t), B(t), X(t) # O]l PIX (t) # 0]

= BIQ(S(8), R())|PIX () # 0]

= " PIS(t) = s|E[Q(S(), R(2)IS() = | PIX () # 0]

SE€S
= "p(s) 3 PIR(t) = 7|S(2) = s|P[X (1) # 0]Q(s,7).  (7)
8ES rcR
Define

car = P[R(t) = r|S(t) = 8] P[X(t) # 0]. ®)

Note that under the stationary distribution and because of the ir-
reducibility, P[X(t) = 0] >0, or equivalently P[X(t) # 0] <L
Hence for c,r as defined in (8), condition C3 holds.

Consider the policy o that schedules at slot ¢ the vector

N M
R(t) = arg Ele@,%(ZZQij(S(t)J)Xu(t)- ©)

i=1 j=1

R(t) is selected based on the backlog and the transmission success
probabilities at slot ¢. Besides the success probabilities, no further
knowledge about the topology state is required. Furthermore, neither
the statistics of the state process, nor of the arrivals need to be known
for the selection of R(t). In the following it is shown that 7o stabilizes
the network under condition C3, therefore, it has a stability region that
coincides with H, the region of achievable throughputs by policies
in G°. Define Y (t) = (X (¢),8(t)) and Y*(t) = (X"(2), 5%(¢)).

Proposition 3: Under policy mo and when condition C3 holds,
the process {Y”(t)}f2, converges weakly to a random vector
Y = (XU,SU), such that

EX" <co (10)

forall v = 0,1,.--, T — 1.

Proof Outline: Under policy o, the process {Y"(t)}i2¢ is a
Markov chain. The proof of the proposition is based on the study of
the drift of a Liapunov function, that is, the sum of the squares of
the backlogs in the system. The drift depends on both the topology
state and the queue length vector. For some topology states, the drift
might be positive for arbitrarily large values of the queue length
vector. In Lemma 1 it is shown that for large enough queue length
vector, if the drift is over the topology states with the stationary
distribution of the topology process, it becomes negative. In Lemma
2 it is shown that the k-step drift becomes negative for sufficiently
large k. The proof of the lemma is based on the following idea. The
distribution of the topology process will converge to its stationary
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distribution for any initial state at time ¢. When the statistics of the
topology process approaches stationarity, then the one-step drift of
the Liapunov function will be negative. If & is large enough such that
the distribution of the topology process is close to its stationary for a
large time period then the cumulative drift from time ¢ to t + k will
become negative. The proof of the proposition is concluded based on
the negative drift of the Liapunov function. O

The proof of Proposition 3 will follow after the next two lemmas. In
the remainder of the correspondence we use the following notational
convention; in the inner product of two vectors, the transposition
superscript of the second vector is omitted whenever no confusion
arises. We will see later in the proof of Lemma 2 that

aX®(t) - rrnea%(Q(s, nX"(t)) (1
is the dominant term in the drift
EV(Y'(t+1)) - VY"))IX"(),5"(t)] (12)

for large Y¥(¢), where
N M

VY ()= X5t

=1 j=1

In view of this fact, the next lemma shows that for large Y (¢), if the
drift in (12) is weighted by the stationary distribution of the topology
state, then it becomes negative. In the rest of the correspondence, the
definition of the norm || - || is

N M
2
2.2

i=1j3=1

[lz]| = forx € X.

Lemma 1: If condition C3 is satisfied then
aX®(t) - Y p(s) ITHGZ%(Q(BJ)X (1) < =€ X (D]]-

8€S

(13)

Proof: By using the fact that a satisfies condition C3 and the
representation that is implied for a, we get after some calculations

aX'(t) = Y _p(s) max (Q(s, 1) X" (1))

8ES
=Y p(s) (Z csr(Q(8,m) X (t)
3€S réR

- max Qe X" (1)

D0 <1 -3 csr> max Q(s, 1) X"(1)

I3 RER
<- ZP(B) (1 - z Csr) max Q(s8,M)X"(t)
a€S reR
< —ms;p(s) max Q(s,7)X"(t) (14)

where
m :Isnelél {1— ZC”}>O'
reR

A direct implication of condition C3 is that for any [, for which
ar; > 0, there exists a state s and a transmission vector r such that

p(8)Qu;(s,7)>0.
Therefore, _

. . —- 1
min max {p(8)Qij(s,7)} =m'>0
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from which we get

—m )" (p(#) max {Q(e.1)X"(1)})

8E€ES
1

VMN

From (14) and (15) the lemma follows with e = mm//VMN. O
The following lemma shows that if the squared backlog in the
network is large enough at time ¢ then it is reduced at time ¢ + &
if k is large enough.
Lemma 2: If condition C3 is satisfied and the scheduling policy
mo is adopted, then there exist By, €p, k¥ > 0 such that

E[V(Y"(t+ k) = V(Y ()IY"(1), S(t)]
< —e||X"@®)| EV(Y'()> Bi.

Proof: See the Appendix. O

To proceed we need the following proposition due to Tweedie [7],
which is presented here in a form appropriate for the problem under
consideration.

Proposition 4 (Tweedie): Suppose that {Y,}3Z; is an aperiodic
and irreducible Markov chain with countable state space S. Let
f(1), g(y) be real nonnegative functions such that g(y) > f(y), y €
A° where A is a finite subset of S. If

E(g(Y2)|Y1 = y) < o0,

(15

X

< —mm' mlaxX]’j(t) < —mm'
J

(16)

yeA (17)

and

E(g(Y)|"1 = y) < gly) - fly), ye A (18)

then the Markov chain is ergodic and

Ef{iY)<

where the random variable ¥ has the steady-state distribution of the
Markov chain {Y.}35%,;.

Proof of Proposition 3: The proof follows easily from Lemma
2 and Proposition 4. Let f,g: X x S — R* be such that

where y = (z, 8). Let A° = {y: V(y) > B}, for B as it is specified
in Lemma 2. We can easily see that (17) holds in this case. From
Lemma 2 we have that if C3 holds, then there is a & such that for the
subsequence ZV(t) = YV(kt).t = 1,---, which is a Markov chain
as well, condition (18) holds. From these two conditions, Proposition
3 follows from Proposition 4. d

APPENDIX
PROOF OF LEMMA 2

For any m < 0 we have
EVY@T+v+m+1)) - V(YT + v +m)[Y (1)
=E[(X(tT+m+v+1)-X{tT+m+v))
AXUT+m+v+1) = X(T +m +o) Y1)
+2E[(X(tT+m+v+1) = X(@T +m+v))

SXTUT +m + )Y (1) (19)

Since the second moments of the arrivals are finite we have

E(X(tT+m+v+1))—XET +m+v))
S(X(T+m+v+1) = XET +m+v) Y ()]
) M

N M N
<Y S E[(AGO+ D =)D (@ + 2ai; +1). (20

i=1 j=1 i=1 j=1
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Notice that we can write
Tk—1
E[V(Y"(t+k))—V(Y"(t))|Y“(t)]= Z EV(Y (T+m+v+1))

m=0
-V (Y (tT+m+v))|Y"(t)]
and from (19) and (20) we get
E[V(Y"(t+ k) = V(Y ()Y (1)]
Tk—1

<ka+2 Y E(X(UT+m+v+1) = X(tT +m+v)

m=0

XTT +m 4+ 0) Y (1)] @1

where we define
N M )
¢ = TZ Z(&ij + 2a;5 + 1).
) i=1 j=1
In the following we focus on the second term of the sum in the right
side of (21) and we bound it appropriately from above. Let D(t)
be the departure vector as it has been defined in the beginning of
Section [II. Then we have
E[(X(tT+m+v+1))~X({tT+m+v))
CXTUT + m+ )Y (1)
= E[AUT + m 4+ 0)XT(tT 4+ m + v)[Y(¢)]

— E[DAT +m+ )X (T +m+v)[Y*()]. (2

In the following, we upper-bound each one of the terms in the
difference in (22). From the fact that

m—1

> AGT +1+v)

XtT+m+v) < X"(t)+
. =0
we get
E[AGT+m+0XT(tT+m+0)[Y" ()] < aX* () +maa’. (23)
For the second term in the difference in the right side of (22) we get
E[DUT +m+ o)X (tT +m +v)|Y7 ()]
= E[E[D(T + m + v)X (tT + m + v)|X (T + m + v),
ST 4+ m +v)]|[Y7(t)]
= E[X(tT 4+ m + v) E[DT (tT + m + v)| X (¢tT + m + v),
S(T +m +v)][¥Y” (1))
= E[max Q(S(T +m + 0), ) XTUT +m +0)|[YV(1)]. (24)
The following holds with probability one.
max QSHT + m + 0), ) XT(tT +m +v)
= max QST +m +v),r)

: (X”(t) + 2_: AT +1+v)
. 1=0 -
-3 D(tT+l+v)>
1=0

> max (Q(S(T +m +v), 1) X" (1))

— max <Q(5(tT +m+v),r)

. mz—: DT +1+ v))T>
1=0

> max (Q(S(ET +m +v),NX"() ~mNM.  (25)
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By taking expectations in (25) conditioning on Y we get
E[max (Q(S(tT + m +v), ) XT (T + m + v))|Y?]
> E[max(Q(S(tT +m +v), ) X" ()Y (1),
S"(t)) - mNM
> Y max (Q(a,r)X"(t) P[S(ET +m +v)

8€S
= 8|87(t)] - mN M. (26)

By replacing in (22) from the relations (23), (24), and (26), we get
E(XtT+m+v+1)—-XT+m+v))
S XTT + m + )Y ()]
< aX'(t) +maa’ + mNM

- D max(Q(s, 1) X"(t)
8€S
- P[S(tT 4+ m + v) = 8|S8"(t)]. @7
By summing (27) over m we get
kT -1
> E(X(tT+m+v+1))
~X(tT+m4+o)XT (tT+m+v)|[Y*(t)]
< (kT)(aa” + NM)+kTaX"(t)
kT —1
= 2 > max(Q(s,r) X" (1)) PIS(tT+m+v)=8|S"(¢)]
m=0 s
kTei )
<Keat Y (@XV(8) =) max (Q(s, 1) X" (£)p™ %" (8))
IcT—lm_0 <
+> Zggg(@(s,r)X”(t))
m=0 8€S
(™Y (8) - P[S(tT+m+v)=8|8%(t)] (28)

where we define ¢c; = T2(aa’ + NM) and @ denotes addition
mod T. After some calculations and from Lemma [ we get

kT—1

> @X*(t) - Y max Qe DX ()" (®)

m=0 8€S

ET—1

_ v . v m@u
= gmx () - max Qe )X (1) Y p"(8))
= kT %;((aX”<t) ~ max (Q(s, ) X" (1)p(s)
< —ekT|| X" ()]

m=0

(29)

where € is as it has been determined in the proof of Lemma 1. Also
we have

kil D max (Q(s,r)X"(t)
- se's(p'"@%s) — P[S({T + m +v) = 8S°(1)))
< kTZj EG; max (Q(a, 1) X" (t))e(m)
kT-1 kT
< Y LeX (t)e(m) < Y LNM|IX"(t)]le(m)  (30)
where = =

e(m) = max max max|p"®"(s) — P[S(IT +m +v)

3'€8 v=0,---,T—1 8€S
= 8|S°(t) = 5|
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and e is the unit vector. Clearly, we have
e(m) < 1.

From the fact that the processes S”(t) are irreducible aperiodic finite
state-space Markov chains we get that

lim e(m) =0.
Let mo be such that
€
< o > .
“m) < st frmzme G

Assuming that % is selected such that kT > mg, we can write from
(30) and (31)

kT —1
> Y max(Qan)X"(®)
m=0 s€S
- (P"®"(8) ~ P[S(tT + m + v) = 8| 8" (1)])
mg—1 kT—1
< D INMIXT@I+ Y SIXol. 6

By replacing in (28) from (29) and (32) and from the resulting
inequality back to (21) we get

E[VY'(t+k) - VY)Y ()]
< key + 2k% e — 26kT| X7 (1)

+2 3 LNM|IXV(5)][+2
=0

kT~1

> slIxel

m:mo
< key + 2k%¢s + mo2 LN M||XV (8)]] — kT X" (t)]|
= key + 2k2cs + mo (2LNM ~ %kT)HX“(t)H

E v
- SKTIX @)l (33)
If we have
4LNM s . 4\
k > T and B] > ((kcl -+ 2k CQ)W>
then the lemma holds with o = (ekT)/4. O
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