Fig. 1.1. Circuit diagram of a simple amplifier with feedback.

\[V_0 = A_0(V_T + \beta V_0) \]
Fig. 1.2. Schematic diagram of a basic laser structure incorporating an amplifying medium and two feedback mirrors, \(M \).
Fig. 1.3. Simple schematic energy level diagram for a particle.

Energy

E_i

Excited states

E_j

E_k

E_0

ν_j is the frequency of the emitted photon

$h\nu_j$

The level with the lowest energy – E_0 is the ground state
Fig. 1.4. Schematic representation of spontaneous emission between two levels of energy E_i and E_j.
Fig. 1.5. A lineshape function $g(v_0, v)$.

\[g(v) \]
Fig. 1.6. Schematic representation of stimulated emission between two levels of energy E_2 and E_1.

$E_2 - E_1 = h\nu_{12}$

ν_{12}
Fig. 1.7. A volume of space swept through per second by part of a plane wave.
Fig. 1.8. A ‘white’ energy density spectrum.
Fig. 1.9. A monochromatic energy density spectrum.
Fig. 1.10. A generalized energy density spectrum.

Energy density $\rho(v)$

ν_1 ν_2 Frequency v
Fig. 1.11. Schematic representation of stimulated absorption between two levels of energy E_1 and E_2.

E_2

N_2

$h\nu_{21}$

N_1

E_1
Fig. 1.12. A photon-particle 'collision' picture of the (a) stimulated emission and (b) absorption processes.
Fig. 1.13 Spectral distribution of black-body radiation at different temperatures.
Fig. 1.14. Simple model of a black-body absorber/emitter – an enclosed cavity containing a small hole.
Fig. 1.15. Allowed values of k_x, k_y, k_z in k-space for a cubical cavity of side L.
Fig. 1.16. The Rayleigh–Jeans prediction of the spectral intensity of a black body compared to the Planck formula.
Fig. 1.17. Radiative processes connecting two energy levels in thermal equilibrium at temperature T.

\[
\begin{align*}
N_2 & \quad \text{Spontaneous emission} \\
\quad & \quad \text{Stimulated emission} \\
\quad & \quad \text{Absorption} \\
N_1 & \quad \text{E}_1 \quad \text{hv} \quad \text{E}_2
\end{align*}
\]
Fig. 1.18. Two energy levels, each of which has a number of sub-levels of the same energy.