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Flush and Reload
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Flush and Reload

N

Flush a memory line
Wait a bit
Measure time to Reload line

Repeat
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Flush a Line From Cache

Last Level Cache (LLC) is inclusive _

56



Flush and Reload
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Flush a memory line
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Reload a Line From Cache

Access by Victim No Access by Victim °




Flush and Reload

B W

Flush memory line
Wait a bit
Measure time to Reload line

Repeat

g

Slow means no access by victim

Fast means that victim accessed
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Range = 3
Observed Volumes ? Known Ranges

8 10 12 20 22 30 Q










Range = 3

Known Ranges

Observed Volumes

Where is the Clique???




Range = 3

Known Ranges

Observed Volumes

Where is the Clique???
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Observed Volumes Known Ranges

Claim: Nodes of the form [1-1] form a Clique!




Range = 3
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Observed Volumes Known Ranges

[1-17] = 10
[1-2]] =22
|[1-31] =30



Range = 3
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Observed Volumes Known Ranges

I[1-1]] = 10
I[1-2]] =22 — [[2-2]] =12
|[1-3]| =30 — [[3-3]| =8
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Cache Attack Model
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The Lines That Correspond to Volume

SQLITE_PRIVATE void sqlite3VdbeMemShallowCopy(Mem *pTo, Mem *pFrom, int srcType){
( (pFrom->flags & MEM_RowSet)==0 );
( pTo->db==pFrom->db ); case OP_Copy: {
if( (pTo) M (pTo,pFrom, s int n:
(pTo, pFrom, MEMCELLSIZE);
if( (pFrom->flags&tMEM_Static)==0 ){ n = pOp->p3;
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem); pInl = &aMem[pOp->p1];
( srcType==MEM_Ephem || srcType==MEM_Stati« pOut = &aMem[pOp->p2];
pTo->flags |= srcType; ( pOut!'=pInl );
} while( 1 ){
71263 L return; (pOut, pInl, MEM_Ephem);
(pOut);
tifdef SQLITE_DEBUG
pOut->pScopyFrom = 0;

T
gel

(pOp->p2+pOp->p3-n, pOut);
if( (n——)==0 ) break;
pOut++;
pInl

}
80417 L break:
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Recovered Volumes

e Obtain an (Approximation of) Volume for each query

Approximate Volumes Recovered by Cache Attack vs. Actual Volumes
T T T T ‘T ] L T

* Repeat the attack and aggregate the T i |
I
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|
|
II

’ I
5 | TR |

|
Volume
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Approximate Volume and Graph Construction

Range = 3

U

/0

Observed Volumes
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Approximate Volume and Graph Construction

Range = 3

U

9

/0

Observed Volumes
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Approximate Volume and Graph Construction

Range = 3

m Some Connections in the Graph might be missing
m The Cligue Might not form properly

"N/
m We still can recover the ~ P
(approximation of) database ‘
1. Change the way we connect nodes
2. Extend the Clique Finding Algorithm H
Observed Volumes
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1. Constructing The Graph

m = :is determined by noise parameter

— Obtained in a preprocessing step
which involves mounting the attack
on a database known to the attacker.

Observed Volumes (Noisy)

58




1. Constructing The Graph

m =:is determined by noise parameter

. Approxlmato Volumos Recovered by Cache Attack vs. Actual Volumes
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2. Extend the Clique Finding Algorithm

db: (30,100,80,30,60)

\“ Algorithm 1: Match & Extend Algorithm

Result: A database with N values
baseSolution = FindMaximalClique();
allCliques = FindRemainingCliques(K, £);
while length(baseSolution) < N do
‘ candidateSolut ion= FindBestCandidate(allCliques);
baseSolution= Merge(baseSolution, candidateSolution)

end
return baseSolution

6y~

No Noise Noisy Measurements
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2. Extend the Clique Finding Algorithm™

Cliqgue Found

é‘,’l’i“;\\,‘ db: (30,100,80,30,60)

Base Solution:

‘\a
')Vl

4%
Q\

‘\

S \
\\'//‘«\1,'

T

Another Clique Found

* Github repository: https://github.com/ariashahverdi/database_reconstruction

~ /
~_7/
I N
/ 98
/

— (29,99,81,30) -

Y
SOT
ajewixoiddy

108 Candidate Solution:

Wi  (29,180,30,60) -

BXEBHE (29, 99,81, 30,60)
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2. Extend the Clique Finding Algorithm™

db: (30,100,80,30,60

Base Solution:

(29,180,30,60) -

Candidate Solution:

)

Y

SO

Vgl  (29,99,81,30) -

Clique Found Another Clique Found BXtend (29, 99,81, 30,60)

* Github repository: https://github.com/ariashahverdi/database_reconstruction 62
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Our Algorithmic Contribution

m Noisy Clique : Increase the Noise Budget
m Pros
— More edges are connected in the graph
m Cons

- There might be some edges that connected by mistake
(Especially if the size of the window gets too large)

— The graph is getting bigger, hence the clique finding algorithm
will takes longer time

m Match & Extend: Fix the Noise Budget and combine multiple
solutions

63



Experimental Setting

* Used Nationwide Inpatient Sample (NIS) from Healthcare Cost and
Utilization Project (HCUP)

 Randomly selected 100,000 records
* Performed range queries on the AMONTH (Jan-Dec) attribute

creiners Loy oo e _______

Uniform Real Database
I Uniform Synthetic Database (Gaussian Like)
1] Uniform Real Database Extra load present
\Y Non-Uniform Real Database

V Uniform Real Database Some volumes are missing
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Experimental Results

Noisy Clique vs. Match & Extend for Real
Database (Experiment I)

« Error Percentage ---Success Rate

120%

999 100 % 100 % 100 %
96% 0 100%

82%
80%

63%
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40%
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; t P 20%
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0 0 0 0 0 0
0, 0> 005 Oog Qs g 4, "

Noisy Clique vs. Match & Extend for Gaussian
Database (Experiment II)

« Error Percentage —~-Success Rate
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120%

100%

80%

60%

40%

Success Rate

20%

0%

Real Database - Uniform Query

Synthetic Database - Uniform Query
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Experimental Results

—
N

Error Percentage

Effect of Extra Load (Experiment III)

« Error Percentage —--Success Rate
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Effect of Missing Volumes (Experiment V)

« Error Percentage —--Success Rate

100% 100% 100%

99 %

98 %

} S %

8, 7 2 4
Uegy, Mgy, M, M
(] 11)&

11] lo 8112 Jo

101%
100%
99%
98%
97%
96%
95%
94%
93%

6 47 8§ /l{
. 1&6’1}) ISSI}]g

Success Rate

Real Database — Extra Load on The System

Real Database — Missing Volumes
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Outline

e Overview of cache side-channel attacks

e Database Reconstruction from Noisy Volumes: A Cache Side-Channel Attack
on SQLite.
A. Shahverdi, M. Shirinov, D. Dachman-Soled.
USENIX 2021

* How to Own the NAS in Your Spare Time.
S. Hong, M. Davinroy, Y. Kaya, D. Dachman-Soled, T. Dumitras.

ICLR 2020
e Security analysis of deep neural networks operating in the presence of cache side-
channel attacks.
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Unique Architectures Are Costly To Obtain

* Neural architecture search (NAS) takes thousands of GPU hours
— NASNet! search used 500 GPUs for 4 days (CIFAR-10)
— Prior work? used 800 GPUs for 28 days (CIFAR-10)

1Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR'17
m !‘,’!ﬁsﬂ!ﬁ!‘mg 2Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR’17
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Unique Architectures Are Costly To Obtain

* Neural architecture search (NAS) takes thousands of GPU hours
— NASNet! search used 500 GPUs for 4 days (CIFAR-10)
— Prior work? used 800 GPUs for 28 days (CIFAR-10)

* Hand-crafting unique architectures require ML experts’ effort
— MalConv discussed many failed architectures in their paper
— 10-15 ML experts were required to design a new architecture for ImageNet

1Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR’17
N MARYLAND 2Zoph et al., Neural Architecture Search with Reinforcement Learning, ICLR’17
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Unique Architectures Are Costly To Obtain

* Neural architecture search (NAS) takes thousands of GPU hours
— NASNet! search used (CIFAR-10)
— Prior work? used (CIFAR-10)

* Hand-crafting unique architectures require ML experts’ effort

— MalConv discussed in their paper
were required to design a new architecture for ImageNet

They Become Intellectual Property or Trade Secrets

1Zoph et al., Learning Transferable Architectures for Scalable Image Recognition, CVPR’17

S| MARYLAND 27oph et al., Neural Architecture Search with Reinforcement Learning, ICLR’17

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 7



What If Your Unique DL Architectures Is Stolen?

MARYLAND

M CYBERSECURITY CENTER

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml)



What Benefit Can An Adversary Have?

e Using the stolen architecture:
— The attacker can train a functional model that has the same accuracy

1So et al., Evolved Transformer, ICML19
m MARYLAND
Y CYBERSECURITY CENTER
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What Benefit Can An Adversary Have?

e Using the stolen architecture:
— The attacker can train a functional model that has the same accuracy
— The attacker can train a high-performing model even on a different dataset?

m Maﬁs‘s‘n!x%:“mg 1So et al., Evolved Transformer, ICML19

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml)
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What Benefit Can An Adversary Have?

e Using the stolen architecture:
— The attacker can train a functional model that has the same accuracy
— The attacker can train a high-performing model even on a different dataset?
— The adversary can perform further attacks? exploiting data augmentation

1So et al., Evolved Transformer, ICML19
m Mﬁsﬁ:!ﬂ!ﬂ!‘mg 2Xiao et al., Seeing Is Not Believing: Camouflage Attacks on Image Scaling Algorithm, USENIX’19

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 11



What Is Our Threat Model?

Novel DL System

Researchers and practitioner
MARYLAND

1 CYBERSECURITY CENTER

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 12



What Is Our Threat Model?

* Machine-Learning-as-a-Service (MLaa$)

Novel DL System

Deployed in the Cloud Using MLaa$

Researchers and practitioner

m MARYLAND
' CYBERSECURITY CENTER

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 13



What Is Our Threat Model?

* In MLaaS: Physical access! to the hardware is impractical

Deployed in the Cloud Using MLaa$

Researchers and practitioners

> Mﬁ!ﬂ%ymg 1Batina et al., CSI NN: Reverse Engineering of Neural Network Architectures through Electromagnetic Side Channel, USENIX'19

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 14



What Is Our Threat Model?

* In MLaaS: remote hardware side-channel attacks make this practical

i

b
[~

Remote Side-Channel Attacker

Deployed in the Cloud Using MLaa$

Researchers and practitioners

m MARYLAND
' CYBERSECURITY CENTER

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 15



What Is Our Threat Model?

* In MLaaS: remote hardware side-channel attacks make this practical

(8

-

EEN N N N - » Remote Side-Channel Attacker
w/o Direct Queries
in Contrast to Prior Work?

Deployed in the Cloud Using MLaa$

Researchers and practitioners

N Mﬁ!ﬂ%yﬁg 2Tramer et al., Stealing Machine Learning Models via Prediction APIs, USENIX’16

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml) 16



What Is Our Threat Model?

e Qur attack steals the unique architectures

w/o Direct Queries
I I I B B e

Unique Architectures
(MalConv or ProxylessNAS)

Deployed in the Cloud Using MLaa$

MARYLAND

1 CYBERSECURITY CENTER
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)
L

Remote Side-Channel Attacker

Researchers and practitioners
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Our Reconstruction Attack

|dentify the DL computations to monitor
Monitor the DL computations via Flush+Reload
De-noise the Flush+Reload trace

Profile the computation times

vk wnN e

Perform the reconstruction process

MARYLAND
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Our Reconstruction Attack

5. Perform the reconstruction process

How to Own NAS in Your Spare Time (For more details: hardwarefail.ml)
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How Does the Flush+Reload Trace Look Like?

[

A Residual Block for ResNets

Flush+Reload Trace

LTS
P Sso
- ~
e ~
- S~
- ~
- S
~<

Conv2d
v
BatchNorm2d
v - - IIIII.'»
RelLU
v
Conv2d

v

-
-
-
— —
- -
~ -
~~ -
~ -

MARYLAND

CYBERSECURITY CENTER
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[1] Conv2d, ty,1,nq
[2] BatchNorm2d, t,, 1, n,
[3] RelLU, t;, 1, ng
[4] Conv2d, ty, 1,1y
[5] BatchNorm2d, ts, 1, ng
[6] add, te, 1, ng
[7] ReLU, t;,1,n,

20



Reconstruction Attacks in Prior Work

A Residual Block for ResNets Flush+Reload Trace
—"‘i~‘~
Pl "
Conv2d [1] Conv2d, ty, 1,0y
v [2] BatchNorm2d, t,, 1, n,
BatchNorm2d [3] RelLU, t3, 1, ns
v o wm [4] Conv2d, te, 1,1,
RelU [5] BatchNorm2d, ts, 1, ng
T I N .
v <+ [6] add, te, 1, g
Conv2d [7] ReLU, t;,1,n,
v
BatchNorm2d )
@ ‘ Prior work?! assumes the attacker knows it’s ResNet - Easy
\ 4
RelU
N MQSE:XI#VAWNMR 1Hong et al., Security Analysis of Deep Neural Networks Operating in the Presence of Cache Side-Channel Attacks, arXiv'18
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What If The Attacker Doesn’t Know It’s ResNet?

7?7 Flush+Reload Trace

———
- ~

— —/— | [1] Conv2d, t, 1,
I_:I i [2] BatchNorm2d, t,, 1, n,
I_:I |:':| [3] ReLU, ts, 1, N3
i \6 ———— N - .- * [4] Conv2d, ty, 1,1y
e Iil [5] BatchNorm2d, ts, 1, ng
« I I N e
é - [6] add, te, 1,6
[7] ReLU, t,, 1,1,
I |
I%I Problem: There are multiple interpretations of the trace

nnnnnnnnnnnnnnnn
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Our Reconstruction Attack — Generation

7?7 Flush+Reload Trace

- -
~~~~~~~~~~~~
S~

[1] Conv2d, ty,1,nq

E [2] BatchNorm2d, t,, 1, n,

[3] RelLU, t3, 1, ng

]
E ’U —————— N - * [4] Conv2d, ty, 1,y
— [5] BatchNorm2d, ts, 1, ng
il « N I .
g [6] add, te, 1, ng

[7] ReLU, t, 1,1
| | E—
. é | Generation Step: we create all the possible candidate architectures

MARYLAND

1 CYBERSECURITY CENTER
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Our Reconstruction Attack — Elimination

7?7 Flush+Reload Trace

-
~~~~~~

——] [1] Convad, t, 1,

|——'—| [2] BatchNorm2d, t,, 1, n,

|——'—| [3] RelLU, t;, 1, ng

Iil g N - .- [4] Conv2d, ty, 1,1y

e [5] BatchNorm2d, ts, 1, ng
« I N ..

é [6] add, te, 1, ng

[7] ReLU, t;,1,n,

we prune the incompatible candidates by estimating computation
parameters for each layer based on the timing information

MARYLAND
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Our Reconstruction Attack — Elimination

7?7 Flush+Reload Trace

-~
~~~~~~

——] [1] Conv2d, tl1,n,
|——'—| [2] BatchNorm2d, t,] 1, n,
|——'—| | [3] RelLU, t; 1, ng
Iil ' - - .- * [4] Conv2d, ty 1,1y
e [5] BatchNorm2d,  ts| 1, ng
« N BN B .
é [6] add, tel 1, ng
[7] ReLU, t711,n,

Computation time (t; — t;_1)
X the size of matrix multiplications

we prune the incompatible candidates by estimating computation
parameters for each layer based on the timing information
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Evaluation Result

MalConv ProxylessNAS-CPU
# candidates 20 180,244
# compatible architectures 1 1

Reconstruction error

Time taken < 10 CPU minutes <12 CPU hours

Our attack accurately reconstructs unique architectures

MARYLAND

M CYBERSECURITY CENTER
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Conclusion and Future Work

* Conclusion: Our attack can reconstruct unique architectures precisely
Unique architectures can be stolen by our reconstruction attack

* Future Worl: Countermeasures against the reconstruction attacks
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