Memory Safety and Buffer Overflows

(with material from Mike Hicks, Dave Levin and Michelle Mazurek)

Today's agenda

- Why care about buffer overflows?
- Memory layout refresher

. Overflows and how they work

What Is a buffer overflow?

- A low-level bug, typically in C/C++
. Significant security implications!

- |f accidentally triggered, causes a crash

- If maliciously triggered, can be much worse
. Steal private info

. Corrupt important info
- Run arbitrary code

C and C++ still very popular

Python 100
C 96.8
C++ 88.58
C# 86.99
Java 70.22
SQL
JavaScript
" TR
HTHL
TypeScript
Go
PHP
Shell [ui%kWi
Ruby
Scala R:gS
Matlab g1

https:/Ispectrum.ieee.org/top-programming-lanquages-2022

http://spectrum.ieee.org/computing/software/the-2016-top-programming-languages

Critical systems in C/C++

- Most OS kernels and utilities
. fingerd, X windows server, shell

- Many high-performance servers
.- Microsoft IS, Apache httpd, nginx
- Microsoft SQL server, MySQL, redis, memcached

M _A_successful attack on these systems is
LT particularly dangerous!
. Mars rover, industrial control systems,

automobiles, healthcare devices, loT

Trends

Relative Vulnerability Type Totals By Year

The vulnerabilties in the NVD are assigned a CWE based on a slice of the total CWE Dictionary. The visualization below shows a stacked bar graph of the total number of vulnerabilities assigned
a CWE for each year. Itis possible (although not common) that a vulnerability has multiple CWEs assigned.

USE OF EXTERNALLY-CONTROLLED FORMAT STRING .

RESOURCE MANAGEMENT ERRORS .

PERMISSIONS, PRIVILEGES, AMD ACCESS COMTROLS .

PATHNAME TRAVERSAL AND EQUIVALEMCE ERRORS .

OTHER .

NUMERIC ERRORS .

INSUFFICIENT VERIFICATION OF DATA AUTHENTICITY .

INSUFFICIENT INFORMATION .

INFORMATION MAMAGEMENT ERRORS .

INFORMATIOM EXPOSURE .

RESTRICTION OF OPERATIONS WITHIMN THE BOUNDS OF A MEMORY BUFFER .

ATION OF SPECIAL ELEMENTS USED IN AM SQL COMMAND ("SQL INJECTIONT .

SPECIAL ELEMENTS USED IN AN OS5 COMMAMND ('OS5 COMMAND INJECTIOMNT .

TION OF SPECIAL ELEMENTS USED IN A COMMAND ["COMMAND INJECTIONT .

LEMENTS IN OUTPUT USED BY A DOWNSTREAM COMPONENT {'INJECTION") .

ETION OF INPUT DURING WEB PAGE GEMERATIOM ('CROESS-SITE SCRIPTING") .
IMPROPER LINK, RESOLUTION BEFORE FILE ACCESS ("LINK FOLLOWING')

TATION OF A PATHNAME TO A RESTRICTED DIRECTORY ('PATH TRAVERSALT .

IMPROPER INFUT VALIDATION .

IMPROPER COMTROL OF GENERATION OF CODE ('CODE INJECTION') .

IMPROFPER AUTHENTICATION .

IMPROPER ACCESS CONTROL .

DATA PROCESSING ERRORS .

DEFRECATED: SOURCE CODE .

DEPRECATED: LOCATION .

DEPRECATED: CODE .

CRYPTOGRAPHIC ISSUES .

CROSS-SITE REQUEST FORGERY (CSRF) .

CREDEMTIALS MANAGEMENT .

CONFIGURATION .

ARED RESOURCE WITH IMPROPER SYNCHROMIZATION ('RACE CONDITIONT .

TPK - TIME AND STATE .

TPK - SECURITY FEATURES .

TPK - CODE QUALITY .

2001 2002 2003 2004 2005 2008 2007 2008 2008 2010 201 2012 2013 2014 2015 2018 207 2018 2018

https://nvd.nist.gov/vuln/visualizations/cwe-over-time

http://web.nvd.nist.gov/view/vuln/statistics

History of Buffer Overflows

. Morris Worm (1988)

- First internet worm

- Spread across Unix Machines

- Code Red (2001)

- Vulnerabillity in Microsoft Internet Information
Services (for hosting web applications)

- DDoS attack on White House’s servers

- SQL Slammer (2003)

- Vulnerability in Microsoft SQL Server 2000.

- Worm spread across more than 250,000
computers and caused a massive internet outage

Recent Examples

Critical RCE vulnerability impacts 29 models of DrayTek routers

By Bill Toulas August 4, 2022 07-1

[es]
e
o

Google Patches Actively Exploited Chrome
Bug

QOO C OOV

Researchers at Trellix have discovered a critical unauthenticated remote code execution (RCE)
vulnerability impacting 29 models of the DrayTek Vigor series of business routers.

The vulnerability is tracked as CVE-2022-32548 and carries a maximum CVSS v3 severity score of 10.0,
categorizing it as critical.

CERT-In issues threat alert for high severity vulnerabilities
in Linux, Unix and Realtek SDK

. Nabeel Ahmed

sHARE ARTICLE | f & ®0 | SPRNT 4| ‘A

The heap buffer overflow issue in the browser's WebRTC engine could
allow attackers to execute arbitrary code.

The vulnerability, tracked as CVE-2022-2294 and reported by Jan Vojtesek from the Avast
Threat Intelligence team on July 1, is described as a buffer overflow, "where the buffer that
can be overwritten is allocated in the heap portion of memory,” according to the
vulnerability's listing on the Common Weakness Enumeration (CWE) website.

CERT-In issues threat alert for high severity vulnerabilities in Linux, Unix and Realtek S5DK | Photo Credit: AP

The Indian Computer Emergency Response Team (CERT-In) revealed
details about the vulnerabilities on Monday

Vulnerabilities in Linux and Unix can be exploited to execute arbitrary code
while the critical vulnerability in Realtek could be affecting networking
devices, revealed the Indian Computer Emergency Response Team (CERT-In) on
Monday.

What we’ll do

. Understand how these attacks work, and how to
defend against them

.- These require knowledge about:
- The compiler

- The OS

- The architecture

Analyzing security requires a whole-systems view

Note about terminology

We will use buffer overflow to mean any access of a
buffer outside of its allotted bounds

An over-read, or an over-write
During iteration (“running off the end”) or by direct access

Could be to addresses that precede or follow the buffer

Memory layout

m/wp-content/uploads/2011/03/memory-lane.jpg

http://www.williesimpson.co

http://www.williesimpson.com/wp-content/uploads/2011/03/memory-lane.jpg

Memory Layout Refresher

- How is program data laid out in memory?

- What does the stack look like?

- What effect does calling (and returning from) a
function have on memory?

- We are focusing on the Linux process model
. Similar to other operating systems

All programs stored in memory

O©

xtftffffff

:

The process’s view In reality, these are
of memory is that virtual addresses;
it owns all of it the OS/CPU map
them to physical
addresses

7

0 6x00000000

4G

Program instructions are in memory

4G

Text

D

O

xffffffft

Ox4c2 sub $0x224,%esp
Ox4cl push %ecx

Ox4bf mov %esp, sebp
Ox4be push %ebp

x00000000

| ocation of data areas

Set when

Runtime

Known at
compile time

4G
process starts

0

Oxffffffff
cmdline & env
int £() |
Stack int x;
Heap malloc (£(long))
Uninit'd data tati .
Init'd data tat const int y=10;
Text
Ox 00000000

Memory allocation

Stack and heap grow in opposite directions

Compiler emits instructions to
adjust the size of the stack at run-time

0x00000000 Oxffffffff
Heap > 3 2-1— Stack
——
managed in-process Stack push 1
by malloc pointer push 3

Focusing on the stack for now

Stack and function calls

- What happens when we call a function”?
- What data needs to be stored?

- Where does it go?

- What happens when we return from a function?
- What data needs to be restored?
- Where does it come from?

Basic stack layout

void func (char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;

OxEffffffff
loc2 loc1 7?2?27 ??7? argl arg2 arg3 caller'sdata
Local variables Arguments
pushed in the pushed in \
/same order as reverse order - .
appens aurin
Happens they appear of code B
during in the code

callee
The local variable allocation is ultimately up to the compiler: Variables could be

allocated in any order, or not allocated at all and stored only in registers, depending
on the optimization level used.

Accessing variables

void func (char *argl, int arg2, int arg3)

{

o2+ Q: Where is (this) loc2?
 A: -8(%ebp)

OxXffffffff

Stack frame
Oxbffff323 Sebp for func
Frame pointer
Can’t know absolute But can know the relative address
address at compile time - loc2 is always 8B before ??77s

Returning from functions

Q: How do we restore previous %ebp?

int main ()

{

func ("Hey", 10, -3);

O

PESP OxXffffffff

Stack frame
sebp for func previous sebp

Push current $ebp before locals

Set $ebp to current $esp
Set $ebp to (%ebp) at return

Returning from functions

int main ()
{

func ("Hey", 10, -3);

., Q: How do we resume here?

OxXffffffff

Stack frame
sebp for func Previous sebp

Instructions in memory

4G Oxffffffff
0x5bf mov %esp, sebp
need to 0x5be push %ebp
save
this O0x4a7 mov $0x0,%eax
Ox4a2 call <func>
addreSS: 0x49b movl $0x804.., (%esp)
0x4a7 0x493 movl $0xa, 0x4 (%esp)) %eip
Text |
0 0x 00000000

Returning from functions

int main ()
{

func ("Hey", 10, -3);

., Q: How do we resume here?
Oxffffffff

Stack frame

"oz | loot [%00

sebp for func sebp
Set $eip to 4 (%ebp) Push next $eip

at return before call

Stack and functions: Summary

Calling function:
1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you want run
after control returns to you

3. Jump to the function’s address

Called function:
4. Push the old frame pointer onto the stack: %ebp
5. Set frame pointer to where the end of the stack is right now: %ebp = %esp
6. Push local variables onto the stack

Returning from function:
7. Reset the previous stack frame: %esp = %ebp, pop %ebp
8.Jump back to return address: pop %eip

Stack overflow!

All rights reserved - rustedreality. com by Stian Kruger &

Buffer overflows

http://rustedreality.com/stack-overflow/

Buffer overflows from 10,000 ft

. Buffer =

. Contiguous memory associated with a variable or field

- CommoninC
. All strings are (NUL-terminated) arrays of char’s

- Overflow =

- Put more into the buffer than it can hold

- Where does the overflowing data go?
- Well, now that you are experts in memory layouts...

Benign outcome

void func (char *argl)

{
char buffer[4];

strcpy (buffer, argl);

}

int main ()

{
char *mystr = "AuthMe!";
func (mystr) ;

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

A u t h 4d 65 21 00 selp &argl

putter SEGFAULT (0x00216551)

Security-relevant outcome

volid func (char *argl)

{

int authenticated = 0;
char buffer[4];

strcpy (buffer, argl);
if (authenticated) { ...

}

int main ()

{
char *mystr = "AuthMe!";
func (mystr) ;

Code still runs; user now ‘authenticated’
M e ! \O

A u t h 4d 65 21 00 %ebp %eip &argl

buffer authenticated

Could it be worse?

void func (char *argl)
{

char buffer[4];
strcpy (buffer,

All ours!

buffer

strcpy will let you write as much as you want (til a ‘\0’)
What could you write to memory to wreak havoc?

Aside: User-supplied strings

- These examples provide their own strings

In reality strings come from users in myriad ways

- Text input, packets, environment variables, file input...

- Validating assumptions about user input is critical!

- We will discuss it later, and throughout the course

BA €981 16| ¢-uonoalul-[edipaw-10]09-1edIjdo-uonoalul/iuod epueduedid sebeuw//:dny

Code Injection

http://images.clipartpanda.com/injection-clipart-color-medical-injection-21941863.jpg

Code Injection: Main idea

void func (char *argl)

{
char buffer([4];

sprintf (buffer, argl);

%elp

Text -.. 00 00 00 00 Sebp %Selp &argl ... EgEYe (@] ‘

buffer

(1) Load my own code into memory
(2) Somehow get 2eip to point to it

Challenge 1

Loading code into memory

It must be the machine code instructions
(i.e., already compiled and ready to run)

- We have to be careful in how we construct it:

It can’t contain any all-zero bytes
- Otherwise, sprintf / gets / scanf/ ... will stop copying
- How to write assembly to never contain a full zero byte?

It can’t use the loader (we're injecting)
- How to find addresses we need?

What code to run?

- One goal: general-purpose shell

- Command-line prompt that gives attacker general
access to the system

- The code to launch a shell is called shellcode

. Other stuff you could do?

d

xor to avoid zero byte

Shellcode

#include <stdio.h>

int main (

)

char «name[2];

Assembly

name[0] = "/bin/sh";
name[1l] = NULL;
execve (name[0], name, NULL) ;
} N
_ argv envp
filename
xorl %eax, %eax "\x31\xcO"
pushl %eax "\x50"
pushl $0x68732f2f "\x68" "//sh"
pushl $0x6e69622f "\x68" "/bin"
movl %esp, $ebx "\x89\xe3"
pushl %eax "\x50"

(Part of)
your
input

apo9 auIyoe

Challenge 2

Getting injected code to run

- We have code somewhere in memory
. We don’t know precisely where

- We need to move %eip to point at it

elp

l

Text --. 00 00 00 00 Sebp S%Seip &argl ..

buffer

Presenter Notes
Presentation Notes
any ideas of how we could do that? (if you’ve seen this before don’t give it away)

@ack and functions: Summary

8.Jump back (o rewm address: pop %ep |

Hijacking the saved $eip

.| 00 00 00 00 %Sebp ESSd%@ Sargl . ERSIZEACEIERN] I

buffer
Oxbff

But how do we know the address?

Hijacking the saved $eip

What if we are wrong?

©) : ©)

zelp sebp

.| 00 00 00 00 %ecbp HONJER Sargl . SRATIZIAVEI-FAC.-E IR

buffer
Oxbff
This is most likely data,
so the CPU will panic
(Invalid Instruction)

Challenge 3

Finding the return address

.- |f we don’t have access to the code, we don't
know how far the buffer is from the saved %$ebp

- One approach: try a lot of different values!

. Worst case scenario: it's a 32 (or 64) bit memory
space, which means 232 (2%4) possible answers

.- Without address randomization (discussed later):
Stack always starts from the same fixed address

Stack will grow, but usually it doesn’t grow very
deeply (unless the code is heavily recursive)

Improving our chances: nop sleds

nop IS a single-byte no-op instruction
(just moves to the next instruction)

Jumping anywhere
%eip sebp here will work

..l 00 00 00 OO0 %ebp Oxbdf‘nop nop nop.. \x0f \x3c \x2f ...

buffer

Oxbff

Now we improve our chances
of guessing by a factor of #nops

Putting It all together

Fill in the space between the target
buffer and the %eip to overwrite

l

padding good

°e P guess

o \x0f \x3c \x2f ...

nop sled malicious code

buffer

gdb tutorial

Your new best friends

x/<n> <addr>

b <function>

- -
0
S Hh

Show info about the current frame
(prev. frame, locals/args, %ebp/%eip)

Show info about registers
(%eip, %ebp, %esp, etc.)

Examine <n> bytes of memory
starting at address <addr>

Set a breakpoint at <function>
step through execution (into calls)

	Memory Safety and Buffer Overflows
	Today’s agenda
	What is a buffer overflow?
	C and C++ still very popular
	Critical systems in C/C++
	Trends
	History of Buffer Overflows
	Recent Examples
	What we’ll do
	Note about terminology
	Memory layout
	Memory Layout Refresher
	All programs stored in memory
	Program instructions are in memory
	Location of data areas
	Memory allocation
	Stack and function calls
	Basic stack layout
	Accessing variables
	Returning from functions
	Returning from functions
	Instructions in memory
	Returning from functions
	Stack and functions: Summary
	Buffer overflows
	Buffer overflows from 10,000 ft
	Benign outcome
	Security-relevant outcome
	Could it be worse?
	Aside: User-supplied strings
	Code Injection
	Code Injection: Main idea
	Challenge 1
	What code to run?
	Shellcode
	Challenge 2
	Stack and functions: Summary
	Hijacking the saved %eip
	Hijacking the saved %eip
	Challenge 3
	Improving our chances: nop sleds
	Putting it all together
	gdb tutorial
	Your new best friends

