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The Pitfalls of 
Anonymization

• “Anonymous” datasets (with PII removed) have been 
connected to specific individuals. 
• AOL search histories.
• Netflix prize.
• Human genetic datasets.

• All of these cases involved auxiliary information.

• A technology is required to give incentives (or at least to 
remove disincentives) to contribute to these datasets.
• “First, do no harm.”
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Statistical databases
• The purpose of a statistical database is to inform. 

• These databases will be exposed to users.

The goal is to reveal information, so the right 
definition of privacy is not obvious.
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A Definition Inspired by 
Semantic Security (Encryption)

An attempt at a workable definition of privacy in this setting:

“Anything that can be learned about an 
individual from the statistical database should 
be learnable without access to the database.”

Naturally relates to semantic security in cryptosystems.
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Paradox
• Violet Mcguire’s salary is $15K higher than the average 

Canadian woman’s salary `DB allows computing average 
salary of Canadian women `This DB breaks Violet Mcquire’s
privacy according to this definition… even if her record is 
not in the database! 

• This has been extended to a general proof of the inadequacy 
of this definition.

• This definition fails as it punishes the database for revealing 
any information at all, which is the purpose of a statistical 
database.
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How to Define Privacy?
 Hard to determine if something satisfies privacy

 Easy to determine if something is NOT private
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Blatant non-privacy
A system is blatantly non-private if an adversary 
can construct a replica database that matches the 
real database in 99% of its entries.

The adversary gets at most 1% wrong.
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Simple Example
A “Database” is simply a 0/1 column vector 𝒅𝒅 = 𝒅𝒅𝟏𝟏, … ,𝒅𝒅𝒏𝒏

A query corresponds to a subset 𝑺𝑺 ⊆ [𝒏𝒏] of indeces

A query response is the number of 1’s in the locations 
contained in S:

�
𝒊𝒊∈𝑺𝑺

𝒅𝒅𝒊𝒊

How much noise do we need to add to each query response in 
order to avoid “blatant non-privacy”?
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Theorem 1: Let M be a mechanism that adds noise bounded by 
E to each query. Then there exists an adversary that can 
reconstruct the database to within 4E positions.
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To avoid blatant non-privacy, we must add noise bounded by 
n/400. A bound of n/401 or lower is provably non-private.



Lessons
 Noise cannot be bounded (i.e. add a value E ∈ [−𝐵𝐵,𝐵𝐵] to 

the true query response.)

 Unlimited number of queries cannot be allowed
 Noise will grow with number of queries

10



Differential privacy
• It should not harm you or help you as an individual to enter 

or to leave the dataset. 

• To ensure this property, we need a mechanism whose 
output is nearly unchanged by the presence or absence of a 
single respondent in the database.

• In constructing a formal approach, we concentrate on pairs 
of databases (D, D’) differing on only one row, with one a
subset of the other and the larger database containing a 
single additional row.
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Differential privacy
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Differential privacy
• An equivalent expression of this idea is given as a ratio 

bounded by R:

• The closer R is to 1, or ε to 0, the more difficult it will be for 
an attacker to determine an individual’s data.

• ε is a publicly known characteristic of our database. It 
defines the level of privacy maintained and it informs users 
of the amount of error to expect in the responses it yields.
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Differential privacy
• An important property of this definition is that any output 

with zero probability is invalid for all databases.
• An output with a probability of zero in a given database must 

have a probability of zero in both neighboring databases and 
by induction, in any other database as well.

• It immediately follows that sub-sampling fails to implement 
differential privacy. 
• A row cannot be present in a sub-sample if that person has 

previously left the dataset.
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Noise properties
• We know we can add noise to query responses to disguise 

the true contents of the database.

• We know the level of disguise required for differential 
privacy. 

• What distribution should we employ to generate this noise?
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Simple Example
A “Database” is simply a 0/1 column vector 𝒅𝒅 = 𝒅𝒅𝟏𝟏, … ,𝒅𝒅𝒏𝒏

A query corresponds to a subset 𝑺𝑺 ⊆ [𝒏𝒏] of indeces

A response is the number of 1’s in the locations contained in 
S:

�
𝒊𝒊∈𝑺𝑺

𝒅𝒅𝒊𝒊

How much and what type of noise can we add to a query 
response to achieve differential privacy for a single query?
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Go Back to Simple Example
Adding or removing an element of 𝒅𝒅 can only change the answer by 1. 
Let x be the outcome of a query in d, (x+1) is the outcome in d’. Let z 
be the added noise. We need to show that:

𝑒𝑒−𝜖𝜖 ≤
Pr 𝑥𝑥 + 𝑧𝑧 ∈ 𝑆𝑆

Pr 𝑥𝑥 + 1 + 𝑧𝑧 ∈ 𝑆𝑆
≤ 𝑒𝑒𝜖𝜖

Assume that for every 𝑥𝑥 \in [𝑛𝑛], 𝑣𝑣 \in 𝑅𝑅, the noise 𝑧𝑧 comes from a 
distribution with PDF 𝜓𝜓 that satisfies

𝑒𝑒−𝜖𝜖 ≤
𝜓𝜓 𝑧𝑧 = 𝑣𝑣 − 𝑥𝑥

𝜓𝜓 𝑧𝑧 = 𝑣𝑣 − 𝑥𝑥 − 1
≤ 𝑒𝑒𝜖𝜖

Then 
𝑒𝑒−𝜖𝜖 ≤

Pr 𝑥𝑥 + 𝑧𝑧 ∈ 𝑆𝑆
Pr 𝑥𝑥 + 1 + 𝑧𝑧 ∈ 𝑆𝑆

≤ 𝑒𝑒𝜖𝜖

Which noise distribution has this property?
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Laplace distribution
• We generate noise using the Laplace distribution.

• The Laplace distribution, denoted Lap(b), is defined with parameter b and has 
density function:

• Taking b = 1/ε we have immediately that the density is proportional to e-ε|z|. 

• This distribution has its highest density at 0.

• For any z, z’ such that |z - z’|≤ 1, the density at z is at most eε times the 
density at z’, satisfying the condition we outlined in the simple case.

• The distribution is symmetric about 0.

• The distribution flattens as ε decreases. More likely to deviate from the true 
value.
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Laplace distribution

19Wikipedia, Creative Commons license



General case
• What about multiple queries? Or queries whose output value 

can change by more than 1 when a row is added or removed?

• To do this, we must consider the sensitivity of the function that 
will generate the response. 
• In the simple case, the sensitivity was 1.

• The sensitivity defines the difference that the noise must hide.
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Final theorem
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In this figure, the distribution on the outputs, show in gray, is 
centered at the true answer of 100, where Δf = 1 and ε= ln 2. In 
orange is the same distribution where the true answer is 101.
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