
Class Exercise—ROP and CFI
ENEE 457
9/15/21

1. In this exercise, we will take a closer look at how to launch a Return Oriented Programming
(ROP) attack that starts a shell. To do this, we need to implement the assembly instructions
corresponding to the shellcode. Actually, we will only have time to implement a few of these
instructions. Specifically, the first steps of launching the shell are to (1) zero out the %eax
register (2) load string “/bin” (0x6e69622f in hex) somewhere in memory---say into memory
address 0x404 (3) load string “//sh” (0x68732f2f in hex) to the consecutive location in memory.

We are given the following gadgets.

Assume that we are currently executing a function func(). What should the stack look like right
before “ret” is called at the end of the execution of func() in order for steps (1) (2) and (3) to be
completed upon return from func()?

0x9b4550: mov [%ebx] %ecx
ret

0x9b8d20: xor %eax %eax
ret

0x9c27e0: pop %ecx
ret

0x9c61b0: pop %ebx
ret

2. Consider the following functions, which we divide into blocks as in the picture below. Each
block can be identified by the number to its left.

Draw the corresponding Control Flow Graph (CFG) for these functions. Each node of the CFG will
correspond to one of the blocks above. Number the nodes of the CFG according to the number
assigned to the corresponding block.

Assume we would like to implement inline monitoring in order to enforce control flow integrity.
Assume the possible labels are {A,B,C,D,E,F,G,H}. How should each node in the CFG be labeled in
a “detailed” labeling of the graph?

1 2

3

4

5

6

7

8

Class Exercise—ROP and CFI
ENEE 457
9/15/21

