
ENEE 457
Static Analysis Class Exercise

1. Assume we have an analyzer that takes as input any C program and has the following
properties:

a) The analyzer always terminates
b) If the C program makes an array out-of-bounds memory access during its run on an

input x, then the analyzer outputs 1.
c) If the C program does not make an array out-of-bounds memory access during its run on

an input x, then the analyzer outputs 0.

Show that the analyzer can be used to solve the Halting Problem.

We need to show a reduction from the halting problem to the array out-of-bounds 
problem. Specifically, we get as input a C program P along with an input x and we 
want to know whether it terminates. We want to transform it into a program P' and 
input x' to feed into the array-out-of-bounds analyzer. If the analyzer tells us that P' 
makes an out-of-bounds access on input x', we would like to conclude that the 
original program P halts on input x. If the analyzer tells us that P' does not make an 
out-of-bounds access on input x', we would like to conclude that the original program 
P does not halt on input x.

At a high level, to perform this transformation, we look at the code of P. Every time 
there is an "exit" instruction (i.e. an instruction that causes the execution to 
terminate), we purposely insert an array-out-of-bounds access immediately before it. 
This transforms the program P into the program P'. The input x can stay the same.

The above solution is not complete, because it is possible that program P also makes 
array-out-of-bounds accesses in other places. Therefore, if our analyzer tells us that 
an array-out-of-bounds occurs, we do not know if this implies that program P halts or 
that program P makes an array-out-of-bounds access elsewhere. However, the above 
gives the high-level intuition of how to argue that static analyzers that always 
terminate and are always correct imply a solution to the halting problem.

Solutions



ENEE 457
Static Analysis Class Exercise

2.

ln 1 (sink) A = untainted
ln 2 (source) B = tainted

ln 6 C >= tainted
ln 7 D >= C

ln 8 E >= untainted
ln 9 D >= E

ln 10 D < = untainted

No vulnerability.
No solution since constraints from ln 6, ln 7, ln 10 imply:
tainted <= C <= D <= untainted
This implies that tainted <= untainted, which is false, since we assume 
tainted > untainted
When mystring2 is assigned in ln 9, it should be given a new name (each 
variable should only be assigned once). ln 9 becomes:
F char *mystring4 = mystring3
ln 10 becomes: printf(mystring4)
Now all constraints can be satisfied.


	Slide Number 1
	Slide Number 2



