# Final Review Sheet ENEE 457 Fall 2020

#### **Static Analysis:**

Consider the following code snippet on which we would like to perform a taint analysis. Type qualifiers are represented by capital letters: A, B, C, D.

```
int printf(A char *fmt, ..);
1
^{2}
3
     int main(B int argc, C char *argv[]) {
4
             if (argc < 2 || argc > 2){
5
                      printf("enter 1 string only");
6
                      return 0; }
             D char *mystring;
7
             if (!strcmp(argv[1], "Hello")){
8
                      mystring = argv[1];
9
             }else{
10
11
                      mystring = "Goodbye";
                      printf(mystring);
12
             }
13
14
             return 0;
     }
15
```

- Identify all the sources and sinks in the code snippet and determine the corresponding settings for the type qualifiers.
- 2. List all of the constraints on the type qualifiers.
- 3. Is there a vulnerability in the above code? Is there a solution for the undetermined type qualifiers that satisfies all the constraints? If there is no vulnerability and no solution, it means that our taint analysis has produced a false positive. How can the taint analysis be modified so that the false positive is removed?

#### Malware:

- 1. What is the difference between a virus and a worm?
- 2. What is the difference between a polymorphic and metamorphic virus?
- 3. What is a virus signature?
- 4. What is a crypting service?

#### Bitcoin

Assume the current Blockchain looks like the following and that the current difficulty level is n.



In order to successfully mine the next block (Block 2), a miner needs to find a salt  $s_3$  such that  $h(s_3, x) = y_3$ , for  $x,y_3$  of a specific form. What is x in the above example? What is the form of  $y_3$ ?

### **Differential Privacy**

Show that mechanism M defined below is not differentially private, using the definition of differential privacy and the databases D and D' defined below.

M chooses a value v uniformly at random from  $\{-1,0,1\}$  and returns the number of UMD students in the database plus v.

| Name    | UMD<br>Student |
|---------|----------------|
| Alice   | 0              |
| Bob     | 0              |
| Charlie | 0              |
| Daniel  | 1              |
| Edgar   | 0              |

| Name    | UMD<br>Student |
|---------|----------------|
| Alice   | 0              |
| Bob     | 0              |
| Charlie | 0              |
| Edgar   | 0              |

# **Dining Cryptographers/MixNets**

Using pseudocode, specify how the Dining Cryptographers protocol would work for 4 parties. What happens if two parties collude? Can they combine forces to learn which of the other two parties is broadcasting in a given round? Why or why not?

## **Password Hashing**

Briefly explain what a Rainbow Table is.

In class we saw that adding a "salt" to the hash can prevent attacks via Rainbow Tables. Is this countermeasure still effective if a 256-bit "salt" is chosen, but the same "salt" value is used for each entry in the password table? Explain your answer.

Briefly list some properties of a good password hash and explain why they are desirable for a password hash, but may not be desirable for other settings.

Consider the following graph (Figure 1) showing the memory usage of a hash function H over time when evaluated on a single input x. Let H' be a hash function that on input  $(x_1||x_2)$ , outputs  $H(x_1)||H(x_2)$ . How can we minimize the space-time complexity of the computation of H'? (Recall that the space-time complexity is the maximum amount of space used in any time step multiplied by the number of time steps.) Draw a graph on the back of the page showing the memory usage of H' over time.



Figure 1: Memory usage of H over time



## **Adversarial machine learning**

Inputs in the training set are 0/1 vectors of dimension n.

Assume the target function is  $x_1 \vee x_2 \vee x_3 \dots \vee x_n$ 

Examples occurring in the training set all satisfy  $x_2 \neq x_3$ .

Give an example of a model that might be output by a machine learning algorithm that would correctly classify all the examples in the training set.

Give an example of an adversarial input that is misclassified by your model given above.