
Web security I
With material from Dave Levin, Mike Hicks, Lujo Bauer,

Collin Jackson and Michelle Mazurek

Web Basics

The web, basically

Browser Web server

Database

Client Server

(Private)

Data

DB is a separate entity,

logically (and often physically)

(Much) user data is

part of the browser

Interacting with web servers

http://www.ece.umd.edu/~danadach/index.html

Resources which are identified by a URL
(Universal Resource Locator)

Protocol

ftp

https

Hostname/server
Translated to an IP address by DNS
(e.g., 128.8.127.3)

Path to a resource

Here, the file index.html is static content

i.e., a fixed file returned by the server

http://www.umiacs.umd.edu/~mmazurek/index.html

Interacting with web servers

Resources which are identified by a URL
(Universal Resource Locator)

Path to a resource

http://facebook.com/delete.php

Here, the file delete.php is dynamic content

i.e., the server generates the content on the fly

?f=joe123&w=16

Arguments

Basic structure of web traffic

Browser Web server

Client Server

Database
(Private)

Data

• HyperText Transfer Protocol (HTTP)

• An “application-layer” protocol for exchanging data

HTTP

Basic structure of web traffic

Browser Web server

Client Server

HTTP Request

User clicks

• Requests contain:

• The URL of the resource the client wishes to obtain

• Headers describing what the browser can do

• Request types can be GET or POST

• GET: all data is in the URL itself

• POST: includes the data as separate fields

HTTP GET requests

HTTP POST requests

Basic structure of web traffic

Browser Web server

Client Server
HTTP Request

User clicks

• Responses contain:

• Status code

• Headers describing what the server provides

• Data

• Cookies (much more on these later)

• Represent state the server would like the browser to store

HTTP Response

HTTP responses

Header

Data

Status code

Adding state to

the web

HTTP is stateless

• The lifetime of an HTTP session is typically:

• Client connects to the server

• Client issues a request

• Server responds

• Client issues a request for something in the response

• …. repeat ….

• Client disconnects

• No direct way to ID a client from a previous session

• So why don’t you have to log in at every page load?

Maintaining State

• Web application maintains ephemeral state

• Server processing often produces intermediate results

• Send state to the client

• Client returns the state in subsequent responses

Browser Web server

Client Server

HTTP Response

HTTP Request

StateState

Two kinds of state: hidden fields, and cookies

Ex: Online ordering

Order

$5.50

Order

Pay

The total cost is $5.50.

Confirm order?

Yes No

socks.com/pay.phpsocks.com/order.php

Separate page

http://socks.com
http://socks.com

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

Ex: Online ordering
What’s presented to the user

pay.php

Ex: Online ordering

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

Anyone see a problem here?

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

Ex: Online ordering

Client can change the value!

value=“0.01”

Solution: Capabilities

• Server maintains trusted state

• Server stores intermediate state

• Send a pointer to that state (capability) to client

• Client references the capability in next response

• Capabilities should be hard to guess

• Large, random numbers

• To prevent illegal access to the state

Using capabilities

<html>

<head> <title>Pay</title> </head>

<body>

<form action=“submit_order” method=“GET”>

The total cost is $5.50. Confirm order?

<input type=“hidden” name=“price” value=“5.50”>

<input type=“submit” name=“pay” value=“yes”>

<input type=“submit” name=“pay” value=“no”>

</body>

</html>

<input type=“hidden” name=“sid” value=“781234”>

Client can no longer change price

Using capabilities

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

The corresponding backend processing

But we don’t want to use hidden fields all the time!

• Tedious to maintain on all the different pages

• Start all over on a return visit (after closing browser window)

price = lookup(sid);

if(pay == yes && price != NULL)

{

bill_creditcard(price);

deliver_socks();

}

else

display_transaction_cancelled_page();

Statefulness with Cookies

• Server maintains trusted state

• Indexes it with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to same server

Browser Web server

Client Server

HTTP Response

HTTP Request

State

CookieCookieServer

Cookie

Cookies

Cookies are key-value pairs

<html> …… </html>

H
e
a
d

e
rs

D
a
ta

Set-Cookie:key=value; options; ….

Cookies

Browser

Client

(Private)

Data

• Store “us” under the key “edition”

• This value was no good as of Feb 18, 2015

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

Requests with cookies

Subsequent visit

Why use cookies?

• Session identifier

• After a user has authenticated, subsequent actions provide a cookie

• So the user does not have to authenticate each time

• Personalization

• Let an anonymous user customize your site

• Store language choice, etc., in the cookie

Why use cookies?

• Tracking users

• Advertisers want to know your behavior

• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

• How can site B know what you did on site A?

• Site A loads an ad from Site C

• Site C maintains cookie DB

• Site B also loads ad from Site C

- “Third-party cookie”

- Commonly used by large

ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if

• the user is logged in with an active session cookie

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side effects

Browser

Client

bank.com

attacker.com

Browser automatically

visits the URL to obtain

what it believes will be

an image

Cookie

bank.com

$$$

http://bank.com
http://bank.com/

Cross-Site Request Forgery

• Target: User who has an account on a vulnerable server

• Attack goal: Send requests to server via the user’s browser

• Look to the server like the user intended them

• Attacker needs: Ability to get the user to “click a link”

crafted by the attacker that goes to the vulnerable site

• Key tricks:

• Requests to the web server have predictable structure

• Use e.g., to force victim to send it

Variation: Login CSRF

• Forge login request to honest site

• Using attacker’s username and password

• Victim visits the site under attacker’s account

• What harm can this cause?

Defense: Secret token

• All (sensitive) requests include a secret token

• Attacker can’t guess it for malicious URL

• Token is derived by e.g. hashing site secret,

timestamp, session-id, additional randomness.

Defense: Referer validation

• Recall: Browser sets REFERER to source of clicked link

• Policy: Trust requests from pages user could legitimately reach

• Referer: www.bank.com

• Referer: www.attacker.com

• Referer:

✔︎

✘
?

