
Memory
safety,

continued
With material from Mike Hicks,

Dave Levin and Michelle Mazurek

http://images.myhardhatstickers.com/img/lg/H/Everybody-Safety-Hard-Hat-Label-HH-0115.gif

Today

• Avoiding exploitation

• Memory violations possible but not harmful

Avoiding
exploitation

ht
tp

s:
//

w
w

w
.a

m
a

zo
n.

co
m

/A
vo

id
-H

u
ge

-S
hi

p
s-

Jo
hn

-T
rim

m
er

/d
p

/0
87

0
33

43
36

What can we do to protect against buffer overflow
exploits?

• Make bugs harder to exploit

• Crash but not code execution

• Avoid bugs with better programming

• Secure coding practices, code review, testing

Better together: Try to avoid bugs, but also add
protection if some slip through

Avoiding exploitation

• Putting attacker code into memory

• (No zeroes or other stoppers)

• Getting %eip to point to attacker code

• Finding the return address

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?

Avoiding exploitation

• Putting attacker code into memory

• (No zeroes or other stoppers)

• Getting %eip to point to attacker code

• Finding the return address

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?

Detecting overflows with canaries

19th century coal mine integrity
• Is the mine safe?
• Dunno; bring in a canary
• If it dies, abort!

We can do the same for stack integrity!

Detecting overflows with canaries

00 00 00 0000 00 00 00

buffer

TextText

%eip

... &arg1&arg1%eip%eip%ebp%ebp ……02 8d e2 1002 8d e2 10

canary

nop nop nop …nop nop nop …
0xbd
f

0xbd
f

\x0f \x3c \x2f ...\x0f \x3c \x2f ...

Not the expected value: abort!

What value should the canary have?

Check canary just before every function return.

Canary values

1. Terminator canaries (CR, LF, NUL (i.e., 0), -1)

• Leverages the fact that scanf etc. don’t allow these

2. Random canaries

• Write a new random value @ each process start

• Save the real value somewhere in memory

• Must write-protect the stored value

3. Random XOR canaries

• Same as random canaries

• But store canary XOR some control info, instead

Other canary tricks

• Put canaries in heap metadata

• Reorganize locals to put buffers above pointers

• Buffers can only overwrite themselves, canary

• [ProPolice]

• Global return stack [StackShield]

• Copy ret address from separate stack every time

Canary weaknesses

• Overwrite function pointer

• Overwrite local variable pointer to
indirectly reference eip

• Anything not stack (heap, etc.)

• Bad randomization

• Memory is not necessarily secret

• Buffer overreads h
ttp

s:
//

yy
1.

st
at

ic
fli

ck
r.

co
m

/6
1

27
/5

9
53

40
20

6
2_

a2
e3

5f
f0

1b
_z

.jp
g

Overread example

• Strncpy is “safe” because it won’t overwrite

• But string not properly terminated

From Strackx et al.

void vulnerable(char *name_in)
{

char buf[10];
strncpy(buf, name_in, sizeof(buf));
printf("Hello, %s\n", buf);

}

00 00 00 0000 00 00 00

buf

TextText ... &arg1&arg1%eip%eip%ebp%ebp ……02 8d e2 1002 8d e2 10

canary

name_in = “0123456789ABC”

does not
append NULL

prints until NULL

36 37 38 39

Avoiding exploitation

• Putting attacker code into memory

• Getting %eip to point to attacker code

• Finding the return address

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?

Defense: Stack Canaries

• Goal: Don’t run attacker code

• Defense: Make stack non-executable

• Try to jump to attacker shellcode in the stack,
panic instead

http://www.ipadforums.net/wallpapers/data/2/DontPanic.png

Return-to-libc

&arg1&arg1%eip%eip%ebp%ebp00 00 00 0000 00 00 00

buffer

TextText

%eip

...nop nop nop ...nop nop nop ...

nop sled
0xbdf0xbdf

good
guess

padding

\x0f \x3c \x2f ...\x0f \x3c \x2f ...

malicious code

0x17f0x17f

known
location

0x20d0x20d

libc

exec()exec()... ...printf()printf() ... “ /bin/sh ““ /bin/sh “

libc

Only need to know
where libc is

Only need to know
where libc is

Avoiding exploitation

• Putting attacker code into memory

• Getting %eip to point to attacker code

• Finding the return address

Recall the steps of a stack smashing attack:

How can we make these attack steps more difficult?

Defense: Stack Canaries

Defense: Non-executable stack (kind of)

Address-space layout
randomization

• Randomly place some elements in memory

• Make it hard to find libC functions

• Make it hard to guess where stack (shellcode) is

Return-to-libc, thwarted

&arg1&arg1%eip%eip%ebp%ebp00 00 00 0000 00 00 00

buffer

TextText

%eip

...

padding

??????

unknown
locations

libc

exec()exec()... ...printf()printf() ... “/bin/sh ““/bin/sh “

libc

??????

ASLR today
• Available on modern operating systems

• Linux in 2004, other systems slowly afterwards; most by 2011

• Caveats:

• Only shifts the offset of memory areas

• Not locations within those areas

• Possible to use a read exploit to find it

• May not apply to program code, just libraries

• Need sufficient randomness, or can brute force

• 32-bit systems: typically16 bits = 65536 possible starting positions;
sometimes 20 bits. Shacham brute force attack could defeat this in 216
seconds (2004 hardware)

• 64-bit systems more promising, e.g., 40 bits possible

Cat and mouse

• Defense: Make stack/heap non-executable to prevent
injection of code
• Attack response: Return to libc

• Defense: Hide the address of desired libc code or
return address using ASLR
• Attack response: Brute force search or information leak

• Defense: Avoid/limit use of libc code
• Attack response: Construct needed functionality using

return oriented programming (ROP)

