Introduction

ENEE 457

Computer Systems Security
Fall 2020
Dana Dachman-Soled

Includes material from Prof. Michelle Mazurek and Prof. Dave Levin

* Normally, we care about correctness
* Does software achieve desired behavior?

* Security Is a kind of correctness
* Does software prevent undesired behavior?

The key difference is the adversary!

Dachman-Soled, Fall 2019

What are undesired behaviors?

* Reveals info that users want to hide
« Corporate secrets, private data, PII
 Privacy/Confidentiality

* Modifies info or functionality

« Destroy records, change data mid-processing,
Install unwanted software

* Integrity
» Deny access to data or service

 Crash website, DoS,
e Fairness

Dachman-Soled, Fall 2019

Why are attacks so common?

« Systems are complex, people are limited

« Many attacks exploit a vulnerability

« Asoftware defect that can be manipulated to yield
an undesired behavior

« Software defects come from:
* Flaws in design
* Bugs in implementation

Dachman-Soled, Fall 2019

Why are attacks so common?

* Normal users avoid bugs

» Adversaries look for them to exploit

Dachman-Soled, Fall 2019

Why are attacks so common?

« Because it's profitable
* (Or attackers think it is)

* Because complex systems are only as strong
as their weakest link

Dachman-Soled, Fall 2019

Steps toward more security....

« Eliminate bugs or
design flaws, or make
them harder to exploit

— Think like an attacker!

* Deeply understand
systems we build

* Be mindful of user-
controlled inputs

Dachman-Soled, Fall 2019

Today’s agenda

 What Is security

» C Refresher (Pointers, Memory Allocation)
« Case Study: Heartbleed Attack

« Course Survey

Dachman-Soled, Fall 2019

What’s in this course?

Software and Web security
Crypto
Network security

Special Topics (Bitcoin, Side-Channels, and
more)

achm

an-Soled, Fall 2019

18

Software security

Memory safety
Malware

Web security
Static analysis

Design principles

Dachman-Soled, Fall 2019

19

What’s in this course?

Software and Web security
Crypto
Network security

Special Topics (Bitcoin, Side-Channels, and
more)

achm

an-Soled, Fall 2019

20

Applied crypto

 What it is (medium-high level)
* How to use it responsibly

Black-box approach

Designing protocols
Authentication that use crypto

Public Key/Symmetric Key

Dachman-Soled, Fall 2019

21

What’s in this course?

Software and Web Security
Crypto
Network security

Special Topics (Bitcoin, Side-Channels, and
more)

achm

an-Soled, Fall 2019

22

Network security

* How to build secure networked systems

Attacks on TCP, DNS, Packet Sniffing

Anonymity

Dachman-Soled, Fall 2017

23

What’s in this course?

» Software and Web security

* Crypto

* Network security

« Special Topics (will include some or all of):
Bitcoin/Blockchain

Adversarial Machine Learning

Password Hashing

Side-Channel Attacks
Differential Privacy

Dachman-Soled, Fall 2019

24

First Topic: Buffer Overflows

Dachman-Soled, Fall 2019

25

Review:
Pointers and Memory Allocation in C

MAN, | SUCK AT THIS GAME..
CAN YOU GIVE ME_
A FEW POINTERS?

Ox3A28213A
Ox6339292C,

Ox 7363632E.

[HATE YOU.

a5k

Dachman-Soled, Fall 2019

26

Review:
Pointers and Memory Allocation in C

Consider a compiler where int takes 4 bytes, char takes 1 byte and pointer takes 4 bytes.
#include <stdio.h:

int main()

¢ int arri[] = {1, 2 ,3};

int *ptri = arri;

char arrc[] = {1, 2 ,3};
char *ptrc = arrc;

printf{"sizeof arri[] = & ", sizeof(arri));
printf{"sizecf ptri = %2d ", sizeof(ptri));

printf{"sizeof arrc[] = & ", sizeof(arrc));
printf{"sizeocf ptrc = %d ", sizeof(ptrc));

return @;

Dachman-Soled, Fall 2019

27

Review:
Pointers and Memory Allocation in C

Assume that float takes 4 bytes, predict the output of following program.
#include <stdio.h>
int main()

float arr[5] = {12.5, 1@8.8, 13.5, 38.5, ©.5};

float *ptrl = &arr[@];

float *ptr2 = ptrl + 3;

printf{"%f ", *ptr2);
printf{"%d", ptr2 - ptril);

return 8;

¥

Dachman-Soled, Fall 2019

Review:
Pointers and Memory Allocation in C

#include<stdioc.h>

int maind)

int a;

char *x;

X = (char *) &a;
a = 512;

x[8] = 1;

x[1] = 2;
printf{"%d\n",a);
return 9;

What is the output? Assume little-endian processor.
The least significant byte (the "little end") of the data is placed at the byte with the lowest

address. The rest of the data is placed in order in the next three bytes in memory.

Dachman-Soled, Fall 2019

29

Review:
Pointers and Memory Allocation in C

What 1s the output of following program?

include <stdio.h>
vold fun{int x)

{
¥

int main()

{ ¥
int y = 28;
fun(y);
printf{"%d", y);
return 8;

¥

¥ = 38;

Dachman-Soled, Fall 2019

30

Review:
Pointers and Memory Allocation in C

Cutput of following program?

¥ include <stdio.h>
vold fun{int *ptr)

{
¥

int main()

.
int y = 28;
fun{&y);
printf{"%d", v);

“ptr = 20;

return @;

Dachman-Soled, Fall 2019

31

Review:
Pointers and Memory Allocation in C

Consider the following program, where are 1, | and k are stored in memory?

int 1i;
int main()
{
int j;
int *k = (int *) malloc (sizeof(int));

Dachman-Soled, Fall 2019

32

Review:

Pointers and Memory Allocation in C

Consider the following three C functions :

[PI] int * g (woid)
1

int x= 18;

return (&x);

¥

[P2] int * g (void)
1

int * px;

*px= 18;

return px;

¥

[P3] int *g (void)
1
int *px;
px = (int *) malloc (sizeof(int));
*ox= 1@;
return px;

Dachman-Soled, Fall 2019

33

Review:
Pointers and Memory Allocation in C

What is the problem with following code?

#include<stdio.h>
int main()

{
int *p = (int *)malloc(sizeof(int));
p = NULL;
free(p);

¥

Dachman-Soled, Fall 2019

34

Review:
Pointers and Memory Allocation in C

include<stdio.h>
include<stdlib.h>

void fun{int *a)
1

a = (int*)malloc(sizeof(int));

¥

int main()

{
int *p;
funip);
printf{"%&d\n",*p);
return{@);

¥

Dachman-Soled, Fall 2019

35

Review:
Pointers and Memory Allocation in C

X: m=malloc{5); m= NULL; 1: wusing dangling pointers
¥: free(n); n-:value=5; 2: using uninitialized pointers
Z: char *p; *p = *a’; 3. lost memory 1is:

Dachman-Soled, Fall 2019

36

Case study: Heartbleed

« SSL Is the main protocol for secure
(encrypted) online communication

» Heartbleed was a vulnerability in the most
popular SSL server

Dachman-Soled, Fall 2019 37

HOW THE HEARTBLEED BUG WORKS:

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "POTRTO" (b LETTERS).

)

ser Meg wants these 6 letters: POTATO.

O

er Meg wants these 6 letters: POTATO.

O
O
| 0
'
https://xkcd.com/1354/

Dachman-Soled, Fall 2019

SERVER, ARE YOU STILL THERE?
IF 50, REPLY "BIRD" (4 LETTERS).

)

HMM. .. ese 4 letters: BIRD.
\
o
o

Dachman-Soled, Fall 2019

39

SERVER, ARE YOU STiLL THERE?
IF S0, REPLY "HAT™ (500 LETTERS).

/

Dachman-Soled, Fall 2019

40

Heartbleed:
A Closer Look at Buffer Read Overflow

o
o

or Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed comme
ctions” page. Eve (administrator) wan
ts to set server’'s master key to "148
350385347, Isabel wants pages about "
snakes but not too long". User Karen

wants o change account password to

Dachman-Soled, Fall 2019

Case study: Heartbleed

« SSL Is the main protocol for secure
(encrypted) online communication

» Malformed packet allows you to see server
memory

» Passwords, keys, emails, visitor logs

* Fix: Don't let the user tell you how much data
to send back!

* This is a design flaw

Dachman-Soled, Fall 2019

42

Heartbleed:
A Closer Look at Buffer Read Overflow

* Read Overflow: A bug that permits reading past the end of a

buffer. int main() {
char buf[100], *p;

while (1) {
_ p = fgets(buf,sizeof(buf),stdin);
Read mteger { len = atoi(p):;

Read message { p = fgets(buf,sizeof (buf),stdin);
for (i=0; i<len; i++) {

Fcho back if (!iscntrl(buf[i]))
_ putchar (buf[i]);
(partial)

else putchar(’.");
message }
printf(“\n");

}

len may exceed
actual message
length!

Dachman-Soled, Fall 2019 43

Heartbleed:

A Closer Look at Buffer Read Overflow

« Sample Output:

% ./echo-server

24

every good boy does fine

ECHO: |every good boy does fine|

ECHO: |hello ther| | — by /ffer size
25
hello

ECHO: |hello..here..y does fine.|j}
leaked data

1112110 there }OK : Input length

BAD:
length > size !

Dachman-Soled, Fall 2019

44

