
Memory Safety and Buffer Overflows
(with material from Mike Hicks, Dave Levin and Michelle Mazurek)

Today’s agenda

• Why care about buffer overflows?

• Memory layout refresher

• Overflows and how they work

What is a buffer overflow?

• A low-level bug, typically in C/C++

• Significant security implications!

• If accidentally triggered, causes a crash

• If maliciously triggered, can be much worse

• Steal private info

• Corrupt important info

• Run arbitrary code

Why study them?

• Buffer overflows are still relevant today

• C and C++ are still popular

• Buffer overflows still occur with regularity

• They have a long history

• Many different approaches developed to defend against

them, and bugs like them

• They share common features with other bugs we will study

• In how the attack works

• In how to defend against it

C and C++ still very popular

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

Critical systems in C/C++

• Most OS kernels and utilities

• fingerd, X windows server, shell

• Many high-performance servers

• Microsoft IIS, Apache httpd, nginx

• Microsoft SQL server, MySQL, redis, memcached

• Many embedded systems

• Mars rover, industrial control systems,

automobiles, healthcare devices, IoT

A successful attack on these systems is

particularly dangerous!

Trends

https://nvd.nist.gov/vuln/visualizations/cwe-over-time

http://web.nvd.nist.gov/view/vuln/statistics

History of Buffer Overflows

• Morris Worm (1988)

• First internet worm

• Spread across Unix Machines

• Code Red (2001)

• Vulnerability in Microsoft Internet Information

Services (for hosting web applications)

• DDoS attack on White House’s servers

• SQL Slammer (2003)

• Vulnerability in Microsoft SQL Server 2000.

• Worm spread across more than 250,000

computers and caused a massive internet outage

Recent Examples

What we’ll do

• Understand how these attacks work, and how to

defend against them

• These require knowledge about:

• The compiler

• The OS

• The architecture

Analyzing security requires a whole-systems view

Note about terminology

• We will use buffer overflow to mean any access of a

buffer outside of its allotted bounds

• An over-read, or an over-write

• During iteration (“running off the end”) or by direct access

• Could be to addresses that precede or follow the buffer

Memory layout

h
tt

p
:/

/w
w

w
.w

ill
ie

s
im

p
s
o

n
.c

o
m

/w
p

-c
o

n
te

n
t/

u
p

lo
a

d
s
/2

0
1

1
/0

3
/m

e
m

o
ry

-l
a

n
e

.j
p

g

http://www.williesimpson.com/wp-content/uploads/2011/03/memory-lane.jpg

Memory Layout Refresher

• How is program data laid out in memory?

• What does the stack look like?

• What effect does calling (and returning from) a

function have on memory?

• We are focusing on the Linux process model

• Similar to other operating systems

All programs stored in memory

0

4G 0xffffffff

0x00000000

The process’s view

of memory is that

it owns all of it

In reality, these are

virtual addresses;

the OS/CPU map

them to physical

addresses

Program instructions are in memory

Text

0

4G 0xffffffff

0x00000000

0x4bf mov %esp,%ebp

0x4be push %ebp

0x4c1 push %ecx

0x4c2 sub $0x224,%esp

...

...

Location of data areas

Text

0

4G 0xffffffff

0x00000000

cmdline & env

Uninit’d data static int x;

Init’d data static const int y=10;

Runtime

Known at

compile time

Set when

process starts

Heap malloc(sizeof(long));

Stack
int f() {

int x;

...

Memory allocation

Stack and heap grow in opposite directions

push 1

push 2

push 3

Compiler emits instructions to

adjust the size of the stack at run-time

Heap

0xffffffff0x00000000

Stack

Stack

pointer

123

return

managed in-process
by malloc

{

Focusing on the stack for now

Stack and function calls

• What happens when we call a function?

• What data needs to be stored?

• Where does it go?

• What happens when we return from a function?

• What data needs to be restored?

• Where does it come from?

Basic stack layout

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

Arguments

pushed in

reverse order

of code

Local variables

pushed in the

same order as

they appear

in the code

void func(char *arg1, int arg2, int arg3)

{

char loc1[4]

int loc2;

...

}

The local variable allocation is ultimately up to the compiler: Variables could be

allocated in any order, or not allocated at all and stored only in registers, depending

on the optimization level used.

Happens during

callerHappens

during

callee

Stack frame
for func

Accessing variables

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

void func(char *arg1, int arg2, int arg3)

{

...

loc2++;

...

}

0xbffff323

Q: Where is (this) loc2?

Can’t know absolute

address at compile time

But can know the relative address
• loc2 is always 8B before ???s

%ebp

A: -8(%ebp)

Frame pointer

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1??????loc1loc2…

int main()

{

...

func("Hey", 10, -3);

...

}

%ebp

Q: How do we restore previous %ebp?

previous %ebp

%ebp

Push current %ebp before locals

Set %ebp to(%ebp) at return

%esp

Set %ebp to current %esp

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()

{

...

func("Hey", 10, -3);

...

}

%ebp

Q: How do we resume here?

previous %ebp

0x5bf mov %esp,%ebp

0x5be push %ebp

...

...

Instructions in memory

Text

0

4G 0xffffffff

0x00000000

0x49b movl $0x804..,(%esp)

0x493 movl $0xa,0x4(%esp)

0x4a2 call <func>

0x4a7 mov $0x0,%eax

...

...

%eip

need to

save

this
address:

0x4a7

Stack frame
for func

Returning from functions

0xffffffff

caller’s dataarg3arg2arg1???%ebploc1loc2…

int main()

{

...

func("Hey", 10, -3);

...

}

%ebp

Q: How do we resume here?

Push next %eip

before call

Set %eip to 4(%ebp)

at return

%eip

%ebp

Stack and functions: Summary

Calling function:

1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you want run

after control returns to you

3. Jump to the function’s address

Called function:

4. Push the old frame pointer onto the stack: %ebp

5. Set frame pointer to where the end of the stack is right now: %ebp = %esp

6. Push local variables onto the stack

Returning from function:

7. Reset the previous stack frame: %esp = %ebp, pop %ebp

8.Jump back to return address: pop %eip

Buffer overflows

h
tt
p
:/
/r

u
s
te

d
re

a
lit

y
.c

o
m

/s
ta

c
k
-o

v
e
rf

lo
w

/

Buffer overflows from 10,000 ft

• Buffer =

• Contiguous memory associated with a variable or field

• Common in C

• All strings are (NUL-terminated) arrays of char’s

• Overflow =

• Put more into the buffer than it can hold

• Where does the overflowing data go?

• Well, now that you are experts in memory layouts…

Benign outcome
void func(char *arg1)

{

char buffer[4];

strcpy(buffer, arg1);

...

}

int main()

{

char *mystr = "AuthMe!";

func(mystr);

...

}

&arg100 00 00 00

buffer

A u t h

Upon return, sets %ebp to 0x0021654d

M e ! \0

%ebp4d 65 21 00 %eip

SEGFAULT (0x00216551)

Security-relevant outcome
void func(char *arg1)

{

int authenticated = 0;

char buffer[4];

strcpy(buffer, arg1);

if(authenticated) { ...

}

int main()

{

char *mystr = "AuthMe!";

func(mystr);

...

}

&arg1%eip%ebp00 00 00 0000 00 00 00

authenticatedbuffer

M e ! \0

4d 65 21 00A u t h

Code still runs; user now ‘authenticated’

Could it be worse?
void func(char *arg1)

{

char buffer[4];

strcpy(buffer, arg1);

...

}

&mystr%eip%ebp00 00 00 00

buffer

strcpy will let you write as much as you want (til a ‘\0’)

All ours!

What could you write to memory to wreak havoc?

Aside: User-supplied strings

• These examples provide their own strings

• In reality strings come from users in myriad ways

• Text input, packets, environment variables, file input…

• Validating assumptions about user input is critical!

• We will discuss it later, and throughout the course

Code Injection

h
tt

p
:/

/i
m

a
g

e
s
.c

lip
a

rt
p

a
n

d
a
.c

o
m

/i
n
je

c
ti
o

n
-c

lip
a

rt
-c

o
lo

r-
m

e
d

ic
a
l-

in
je

c
ti
o

n
-2

1
9

4
1

8
6

3
.j
p

g

http://images.clipartpanda.com/injection-clipart-color-medical-injection-21941863.jpg

Code Injection: Main idea

void func(char *arg1)

{

char buffer[4];

sprintf(buffer, arg1);

...

}

&arg1%eip%ebp00 00 00 00

buffer

(1) Load my own code into memory

Haxx0r c0d3Text

%eip

(2) Somehow get %eip to point to it

... ...

Challenge 1

• It must be the machine code instructions

(i.e., already compiled and ready to run)

• We have to be careful in how we construct it:

• It can’t contain any all-zero bytes
- Otherwise, sprintf / gets / scanf / … will stop copying

- How to write assembly to never contain a full zero byte?

• It can’t use the loader (we’re injecting)
- How to find addresses we need?

Loading code into memory

What code to run?

• One goal: general-purpose shell

• Command-line prompt that gives attacker general

access to the system

• The code to launch a shell is called shellcode

• Other stuff you could do?

Shellcode
#include <stdio.h>

int main() {

char *name[2];

name[0] = "/bin/sh";

name[1] = NULL;

execve(name[0], name, NULL);

}

xorl %eax, %eax

pushl %eax

pushl $0x68732f2f

pushl $0x6e69622f

movl %esp,%ebx

pushl %eax

...A
s
s
e
m

b
ly

"\x31\xc0"

"\x50"

"\x68" "//sh"

"\x68" "/bin"

"\x89\xe3"

"\x50"

...

M
a
c
h

in
e
 c

o
d

e

(Part of)

your

input

filename
argv envp

xor to avoid zero byte

• We have code somewhere in memory

• We don’t know precisely where

• We need to move %eip to point at it

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

... ... \x0f \x3c \x2f ...

Challenge 2
Getting injected code to run

Stack and functions: Summary

Calling function:

1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you want run

after control returns to you

3. Jump to the function’s address

Called function:

4. Push the old frame pointer onto the stack: %ebp

5. Set frame pointer to where the end of the stack is right now: %ebp = %esp

6. Push local variables onto the stack

Returning from function:

7. Reset the previous stack frame: %esp = %ebp, pop %ebp

8.Jump back to return address: pop %eip

Hijacking the saved %eip

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

...

0xbff

0xbff

But how do we know the address?

%ebp

.. \x0f \x3c \x2f ...

Hijacking the saved %eip

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

...

0xbff

0xbff

%ebp

..

.

What if we are wrong?

0xbdf

This is most likely data,

so the CPU will panic

(Invalid Instruction)

\x0f \x3c \x2f ...

• If we don’t have access to the code, we don’t
know how far the buffer is from the saved %ebp

• One approach: try a lot of different values!

• Worst case scenario: it’s a 32 (or 64) bit memory

space, which means 232 (264) possible answers

• Without address randomization (discussed later):

• Stack always starts from the same fixed address

• Stack will grow, but usually it doesn’t grow very

deeply (unless the code is heavily recursive)

Challenge 3
Finding the return address

Improving our chances: nop sleds

&arg1%eip%ebp00 00 00 00

buffer

Text ...

0xbff

0xbff

%ebp

…0xbdf nop nop nop..

nop is a single-byte no-op instruction

(just moves to the next instruction)

Now we improve our chances

of guessing by a factor of #nops

Jumping anywhere

here will work

\x0f \x3c \x2f ...

%eip

Putting it all together

&arg1%eip%ebp00 00 00 00

buffer

Text

%eip

... …nop nop nop..

nop sled

0xbdf

good
guess

padding

\x0f \x3c \x2f ...

malicious code

Fill in the space between the target
buffer and the %eip to overwrite

gdb tutorial

Your new best friends

i f

i r

x/<n> <addr>

b <function>

s

Set a breakpoint at <function>

step through execution (into calls)

Examine <n> bytes of memory

starting at address <addr>

Show info about registers

(%eip, %ebp, %esp, etc.)

Show info about the current frame

(prev. frame, locals/args, %ebp/%eip)

