Memory Safety and Buffer Overflows

(with material from Mike Hicks, Dave Levin and Michelle Mazurek)

Today's agenda

- Why care about buffer overflows?
- Memory layout refresher

.- Overflows and how they work

What is a buffer overtlow?

. A low-level bug, typically in C/C++
- Significant security implications!

- |f accidentally triggered, causes a crash

- |If maliciously triggered, can be much worse

. Steal private info
. Corrupt important info
- Run arbitrary code

Why study them?

- Buffer overflows are still relevant today

- C and C++ are still popular
- Buffer overflows still occur with regularity

- They have a long history

- Many different approaches developed to defend against
them, and bugs like them

- They share common features with other bugs we will study

n how the attack works

n how to defend against it

C and C++ still very popular

Language Rank Types Spectrum Ranking

et @ T WO
2 oo Dos EER
. c Dos WS
con @I
co @07 EAN
. v >
e @ @I

s smesow @1 BRI
so @ T BRI

. vt >
Rsde @0 [
mae @ T AL

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-lanquages

https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages

Critical systems in C/C++

- Most OS kernels and utilities
. fingerd, X windows server, shell

- Many high-performance servers
- Microsoft IIS, Apache httpd, nginx
- Microsoft SQL server, MySQL, redis, memcached

A successful attack on these systems is
particularly dangerous!

. Mars rover, industrial control systems,

automobiles, healthcare devices, loT

Ma

Trends

Relative Vulnerability Type Totals By Year

The vulnerabilties in the NVD are assigned a CWE based on a slice of the total CWE Dictionary. The visualization below shows a stacked bar graph of the total number of vulnerabilities assigned
a CWE for each year. Itis possible (although not common) that a vulnerability has multiple CWEs assigned.

USE OF EXTERNALLY-CONTROLLED FORMAT STRING .

RESOURCE MANAGEMENT ERRORS .

PERMISSIONS, PRIVILEGES, AMD ACCESS COMTROLS .

PATHNAME TRAVERSAL AND EQUIVALEMCE ERRORS .

OTHER .

NUMERIC ERRORS .

INSUFFICIENT VERIFICATION OF DATA AUTHENTICITY .

INSUFFICIENT INFORMATION .

INFORMATION MAMAGEMENT ERRORS .

INFORMATIOM EXPOSURE .

RESTRICTION OF OPERATIONS WITHIN THE BOUNDS OF A MEMORY BUFFER .

ATION OF SPECIAL ELEMENTS USED IN AM SQL COMMAND ("SQL INJECTIONT .

SPECIAL ELEMENTS USED IN AN 05 COMMAMND ('OS5 COMMAND INJECTIONT .

TION OF SPECIAL ELEMENTS USED IN A COMMAND ["COMMAND INJECTIONT .

LEMENTS IN OUTPUT USED BY A DOWNSTREAM COMPONENT {'INJECTION) .

ETION OF INPUT DURING WEB PAGE GEMERATIOM ('CROESS-SITE SCRIFTING") .
IMPROPER LINK, RESOLUTION BEFORE FILE ACCESS ("LINK FOLLOWING')

TATION OF A PATHNAME TO A RESTRICTED DIRECTORY {'PATH TRAVERSALT .

IMPROPER INFUT VALIDATION .

IMPROPER COMTROL OF GENERATION OF CODE ('CODE INJECTION') .

IMPROFPER AUTHENTICATION .

IMPROPER ACCESS CONTROL .

DATA PROCESSING ERRORS .

DEFRECATED: SOURCE CODE .

DEPRECATED: LOCATION .

DEPRECATED: CODE .

CRYPTOGRAPHIC ISSUES .

CROSS-SITE REQUEST FORGERY (CSRF) .

CREDEMTIALS MANAGEMENT .

CONFIGURATION .

ARED RESOURCE 'WITH IMPROPER SYNCHROMIZATION ('RACE CONDITIONT .

TPK - TIME AND STATE .

TPK - SECURITY FEATURES .

TPK - CODE QUALITY .

2001 2002 2003 2004 2005 2008 2007 2008 2008 2010 201 2012 2013 2014 2015 2018 207 2018 2018

https://nvd.nist.qgov/vuln/visualizations/cwe-over-time

http://web.nvd.nist.gov/view/vuln/statistics

History of Buffer Overtflows

- Morris Worm (1988)

. FiIrst Internet worm

- Spread across Unix Machines

- Code Red (2001)

- Vulnerabllity in Microsoft Internet Information
Services (for hosting web applications)

- DDoS attack on White House's servers

- SQL Slammer (2003)

- Vulnerabillity in Microsoft SQL Server 2000.

- Worm spread across more than 250,000
computers and caused a massive internet outage

Recent Examples

WhatsApp Buffer Overflow Vulnerability
Reportedly Exploited In The Wild

Zero-day vulnerability announced
byMcAfee at Defcon

JT Keating | Threat Research | May152019 |

83 § Facebook in Linkedin

SHARES
Richard Harris in Security Monday, August 19, 2019

A new WhatsApp vulnerability has attracted the attention of
the press and security professionals around the world.

. 3,387 @
Zimperium zLabs will be creating a detailed blog soon, but At DEFCON, McAfee has announced the discovery of a zero-
we wanted to provide our readers with preliminary day vulnerability in a commonly used Delta industrial control MecAfee has announced the discovery
information now. system. of a zero-day vulnerability in a

. commonly used Delta industrial
BOE | ng 787 On -BO& l'd Network The vulnerability found in the Delta enteliBUS Manager could control Syystem_
VU I nerable to RemOte HaCki ng, allow malicious actors complete control of the operating
Researcher Says

analyzed configuration files — uncovering multiple security vulnerabilities that

Boeing disputes 10Active findings ahead of security firm's Black Hat could allow an attacker to remotely gain access to the sensitive avionics
USA presentation. netwark of the aircraft, also known as the crew information systems network.

BLACK HAT USA — Las Vegas — |OActive industrial cybersecurity expert "It turns out the firmware | was analyzing is part of the aircraft that is

Ruben Santamarta last fall discovered an Internet-exposed Boeing Co. server Segregating between the cdifferent networks,” he told Dark Reading prior to
housing firmware specifications for the aviation manufacturer's 787 and 737 publicly disclosing his findings here today. The firmware belongs to a core
airplane networks. network companent in the 787's network and was riddled with buffer overflow,
memory corruption, stack overflows, and denial-of-service flaws that he says
could be exploited by a hacker to remotely reach the aircraft's sensitive crew
information systems network module.

Intrigued. Santamarta dug into the firmware for the 787, Boeing's highly
networked plane. He meticulously reverse-engineered the binary code and

What we’ll do

- Understand how these attacks work, and how to
defend against them

- These require knowledge about:
- The compiler

- The OS

- The architecture

Analyzing security requires a whole-systems view

Note about terminology

We will use buffer overflow to mean any access of a
buffer outside of its allotted bounds

An over-read, or an over-write
During iteration (“running off the end”) or by direct access

Could be to addresses that precede or follow the buffer

GdlaUe|-AIoWaW/S0/T T02Z/SPeojdn/IUaju0d-dm 0 UOSAIISSI|[IM MWW/

Memory layout

http://www.williesimpson.com/wp-content/uploads/2011/03/memory-lane.jpg

Memory Layout Refresher

- How Is program data laid out in memory?

- What does the stack look like?

- What effect does calling (and returning from) a
function have on memory?

- We are focusing on the Linux process model
- Similar to other operating systems

All programs stored in memory

O©

xtftffffft

\

The process’s view In reality, these are
of memory is that virtual addresses,;
It owns all of it the OS/CPU map
them to physical
addresses

7

0 0x00000000

4G

Program Instructions are in memory

4G

Text

D

O

xffffffff

Ox4c?2 sub $0x224,%esp
Ox4cl push %Secx

Ox4bf mov %esp, sebp
Ox4be push %ebp

x00000000

| ocation of data areas

Set when 46

pProcess starts

Runtime

Known at
compile time

0

A

xffffffff

U

cmdline & env

Stack

Heap

Uninit'd data

Init'd data

Text

(D)

int £() {
int x;

ic const int y=10;

x00000000

Memory allocation

Stack and heap grow In opposite directions

Compiler emits instructions to
adjust the size of the stack at run-time

0x00000000 Oxffffffff
Heap g 3 2-1— Stack
——
managed in-process Stack push 1
by malloc pointer push 3

return

Focusing on the stack for now

Stack and function calls

- What happens when we call a function?
- What data needs to be stored?
- Where does it go?

- What happens when we return from a function?
- What data needs to be restored?
- Where does it come from?

Basic stack layout

void func(char *argl, int arg2, int arg3)

{
char locl[4]
int loc2;

Oxffffffff
loc2 locl ??? ??? argl arg2 arg3 caller'sdata
Local variables Arguments
pushed In the pushed In \
/same order as reverse order d
Happens durin

Happens they appear of code P e
during in the code

callee
The local variable allocation is ultimately up to the compiler: Variables could be

allocated in any order, or not allocated at all and stored only in registers, depending
on the optimization level used.

Accessing variables

void func(char *argl, int arg2, int arg3)

{

ez Q1 Where is (this) Loc2?
o A: -8(%ebp)

OXLLfffffff

Stack frame
Oxbffff323 %sebp for func
Frame pointer
Can’t know absolute But can know the relative address
address at compile time - loc2 Is always 8B before ??7s

Returning from functions

Q: How do we restore previous %ebp?

int main ()

{

func ("Hey", 10, -3);

©)

PESP OXfLfffffff

Stack frame
sebp for func pPrevious S%sebp

Push current $ebp before locals

Set $ebp to current $esp
Set $ebp to (%ebp) atreturn

Returning from functions

int main ()
{

func ("Hey", 10, -=-3);

. Q: How do we resume here?

OXfLfffffff

Stack frame
sebp for func Previous sebp

Instructions In memory

4G Oxffffffff
0x5bf mov %esp, sebp
need to 0x5be push %ebp
save
thiS Ox4a7 mov $0x0, %eax
Ox4a?2 call <func>
addreSS: 0x49b movl $0x804.., (%esp)
Ox4a7 0x493 movl $0xa,0x4 (%esp)) %eip
Text
0 0x00000000

Returning from functions

int main ()
{

func ("Hey", 10, -3);

. Q: How do we resume here?
Oxffffffft

Stack frame

“loc2 | oot [%0ep)

sebp for func sebp
Set $eip to 4 (%ebp) Push next $eip

at return before call

Stack and functions: Summary

Calling function:
1. Push arguments onto the stack (in reverse)

2. Push the return address, i.e., the address of the instruction you want run
after control returns to you

3. Jump to the function’s address

Called function:

4. Push the old frame pointer onto the stack: %ebp
5. Set frame pointer to where the end of the stack is right now: %ebp = %esp
6. Push local variables onto the stack

Returning from function:
/. Reset the previous stack frame: %esp = %ebp, pop %ebp
8.Jump back to return address: pop %eip

All rights reserved - rustedreality.com by Stian Kruger @

Buffer overflows

http://rustedreality.com/stack-overflow/

Buffer overflows from 10,000 ft

- Buffer =

- Contiguous memory associated with a variable or field

- CommoninC
. All strings are (NUL-terminated) arrays of char’s

. Overflow =

- Put more into the buffer than it can hold

- Where does the overflowing data go?
- Well, now that you are experts in memory layouts...

Benign outcome

vold func (char *argl)

{
char buffer[4];

strcpy (buffer, argl);

}

int main ()

{
char *mystr = "AuthMe!";

func (mystr) ;

}

Upon return, sets $ebp to 0x0021654d

M e ! \O

A u t h 4d 65 21 00

elp

&argl

putter SEGFAULT (0x00216551)

Security-relevant outcome

volid func (char *argl)

{

int authenticated = 0;
char buffer[4];

strcpy (buffer, argl);
if (authenticated) { ...

}

int main ()

{
char *mystr = "AuthMe!";
func (mystr) ;

Code still runs; user now ‘authenticated’
M e ! \O

A u t h 4d 65 21 00 %ebp S%eip &argl

buffer authenticated

Could 1t be worse?

void func (char *argl)

{

char buffer[4];
strcpy (buffer,

de - All !
ﬁﬁﬁ_\‘\co ours!

buffer

strcpy Will let you write as much as you want (til a ‘\0’)
What could you write to memory to wreak havoc?

Aside: User-supplied strings

- These examples provide their own strings

In reality strings come from users in myriad ways

- Text input, packets, environment variables, file input...

- Validating assumptions about user input is critical!

- We will discuss It later, and throughout the course

BA'€98T1 6T ¢-uonoalul-fedipaw-10]09-11edijd-uonoalulwod epuediredid Sabew//:ony

Code Injection

http://images.clipartpanda.com/injection-clipart-color-medical-injection-21941863.jpg

Code Injection: Main idea

volid func (char *argl)

{
char buffer([4];

sprintf (buffer, argl);

elp

Text --- 00 00 00 00 %ebp S%elip &argl ... EgEVeddgelolsk]

buffer

(1) Load my own code into memory
(2) Somehow get $eip to point to it

Challenge 1

Loading code iInto memory

It must be the machine code instructions
(.e., already compiled and ready to run)

- We have to be careful iIn how we construct It;

It can’t contain any all-zero bytes

- Otherwise, sprintf / gets / scanf/ ... will stop copying
- How to write assembly to never contain a full zero byte?

It can’t use the loader (we're injecting)
- How to find addresses we need?

What code to run?

- One goal: general-purpose shell

- Command-line prompt that gives attacker general
access to the system

- The code to launch a shell is called shellcode

. Other stuff you could do?

d

Xor to avoid zero byte

Shellcode

#include <stdio.h>
int main() {
char «namel[2];

name[0] = "/bin/sh";

name[1l] = NULL;
execve (name[0],

name, NULL) ;

Assembly

} N
/ argv envp

filename

xorl %Seax, %eax
pushl %eax

pushl $0x68732f2f
pushl S$S0x6e69622f
movl %esp, sebx
pushl %eax

"\x31\xcO"
"\x50"

"\x68" "//sh"
"\x68" "/bin"
"\x89\xe3"
"\x50"

(Part of)
your
Input

3P0 3UIYIeN

Challenge 2

Getting Iinjected code to run

- We have code somewhere in memory
. We don’t know precisely where

- We need to move %elp to point at it

elp

l

Text -.- 00 00 00 00 S%ebp Seip &argl ..

buffer

@aak and functions: Summary

6 Jump back o e addess pop eep]

Hijacking the saved %eip

.| 00 00 00 00 %ecbp Edid#@ Sargl . ERSIZAAVEIEAV-] I

Oxbff

But how do we know the address?

Hijacking the saved %eip

What if we are wrong?

©) . ©)

se1p sebp

.| 00 00 00 00 %Secbp NBNJER Gargl . SRCIIEAVEI-EACE I

buffer
Oxbff
This Is most likely data,
so the CPU will panic
(Invalid Instruction)

Challenge 3

Finding the return address

- |f we don’t have access to the code, we don'’t
know how far the buffer is from the saved %$ebp

- One approach: try a lot of different values!

. Worst case scenario: it's a 32 (or 64) bit memory
space, which means 232 (2°4) possible answers

- Without address randomization (discussed later):
Stack always starts from the same fixed address

Stack will grow, but usually it doesn’t grow very
deeply (unless the code is heavily recursive)

Improving our chances: nop sleds

nop IS a single-byte no-op Instruction
(just moves to the next instruction)

Jumping anywhere
Seip sebp here will work

.. 00 00 00 OO %ebp Oxbdf | nop nop nop.. \x0f \x3c \x2f ...

Oxbff

Now we iImprove our chances
of guessing by a factor of #nops

Putting It all together

Fill in the space between the target
buffer and the $eip to overwrite

|

padding good
guess

Oxbdf | nop nop nop.. \x0f \x3c \x2f ...

nop sled malicious code

zelp

l

buffer

gdb tutorial

Your new best friends

x/<n> <addr>

b <function>

- -
n
S Hh

Show info about the current frame
(prev. frame, locals/args, %ebp/%eip)

Show Info about registers
(%eip, Y%ebp, %esp, etc.)

Examine <n> bytes of memory
starting at address <addr>

Set a breakpoint at <function>
step through execution (into calls)

