
Configuration Reasoning and Ontology For Web

Dana Glasner∗

Columbia University
dglasner@cs.columbia.edu

Vugranam C. Sreedhar
IBM TJ Watson Research Center

vugranam@us.ibm.com

Abstract

Configuration plays a central role in the deployment and
management of Web infrastructures and applications. A con-
figuration often consists of assigning “values” to a pre-defined
set of parameters defined in one or more files. Although the
task of assigning values to (configuration) parameters looks
simple, configuring infrastructures and applications is a very
complex process. In this paper we present a framework for
defining and analyzing configuration of an Apache server. We
define the notion of “configuration space” of an Apache server
as a set of possible values that can be assigned to configuration
parameters. We then define the notion of an “obstacle” and
“forbidden region” in the configuration space that should be
avoided. We model configuration space using a logical frame-
work based on OWL (Web Ontology Language). The obstacles
and forbidden regions in the configuration space are modeled
as constraints in the logical framework. These obstacles and
forbidden regions are essentially “anti-patterns” that a typical
installation should avoid. Given an instance of a configuration
(that is, a “point” in the configuration space) we then check if
the instance is “obstacle free” using logical reasoning.

1. Introduction

Configuration plays a central role in the deployment and
management of Web applications and infrastructures. Web ap-
plications and infrastructures are often susceptible to malicious
attacks. A naive and default configuration almost always leads
to security and performance problems. A 2003 Gartner infor-
mation security report concluded that 65% of attacks are due
to poorly configured or mis-configured systems.1 Configur-
ing infrastructures and applications is a very complex process.
Configuring a Web application involves many steps, and they
include setting many different configuration parameters. Un-
derstanding the consistency of different configuration parame-
ters is overwhelming. Also, often a system administrator has

∗The work described in this paper was done when the author was doing her
summer internship at IBM TJ Watson Research Center.

1Taxonomy of Software Vulnerabilities, John Pescatore, Gartner, Inc. 11
September 2003.

to deal with configuring many different and interacting Web
applications and runtime environments. For instance, the con-
figuration of Apache Web server can interact with the configu-
ration of WebSphere and DB2 backend server. Such configura-
tion interaction is even more pronounced in high-volume data
centers. Also, in data centers configurations of different data
center sub-systems are done by different people over a period
of time. So it is extremely important to address the consistency
problem of configurations.

In this paper we present a framework, called CROW (Con-
figuration Reasoning and Ontology for Web), for defining and
analyzing the configuration of an Apache Web server. Al-
though our framework is general and can be applied to other
system configurations, we focused on Apache server for sev-
eral reasons. First, Apache server is the most popular Web
server installation. Second, each application or system have
their own way of setting configuration parameters, and we
did not want to fall into the “tar pit” of understanding vari-
ous systems configuration and deviating from our framework.2

Apache server provides a simple way to set configuration pa-
rameter. Third, we wanted to focus on a specific application
domain to implement our framework and use our framework
to help our product team.

Our approach to configuration analysis is inspired from path
planning in Robotics: given a robot, a workspace, a set of ob-
stacles, and robot path, the goal is to determine whether the
robot can navigate the path without colliding with any obsta-
cles. The notion of “configuration space” is a fundamental
concept in Robotics that simplifies path planning to motion
planning of a “point” in “free space”. In order to understand
Apache configuration, we define the notion of configuration
space as a set of possible values that can be assigned to config-
uration parameters. A configuration then is essentially a point
in the configuration space. A configuration point is made of
a tuple of coordinates that uniquely identifies the point in the
configuration space. Each element of a tuple corresponds to
a dimension in the coordination space. An obstacle is a con-
figuration that should be avoided, and forbidden region is a
set of obstacles. In our framework a forbidden region is a

2Although we are currently investigating configuration of a large data cen-
ter that has such tar pits (see Section 6).

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

Figure 1. The CROW framework.

sub-set of configuration space that satisfies certain well known
anti-patterns [2]. We reduce the problem of Aapche config-
uration analysis to collision free path planning in Robotics:
given an Apache configuration space, the set of obstacles (anti-
patterns), and a httpd.conf file, the goal is to determine
whether the configuration parameter settings in httpd.conf
will “collide” with any of the anti-patterns.
Example: The main Apache configuration file httpd.conf
is a plain text file and the file simply contains a list of direc-
tives. A directive is a “command” or an “instruction” to the
Apache runtime to respond or behave in a certain (directed)
way. Consider the following snippets of a typical http.conf
file

This directive configures what you return as the Server
HTTP response Header. The default is ’Full’ which sends
information about the OS-Type and compiled in modules.
Set to one of: Full|OS|Minor|Minimal|Major|Prod, where
Full conveys the most information and Prod the least.
#
ServerTokens Prod

Optionally add a line containing the server version
and virtual host name to server-generated pages
(error documents, FTP directory listings, mod_status
and mod_info output etc., but not CGI generated
documents). Set to "EMail" to also include a mailto:link
to the ServerAdmin. Set to one of: On|Off|EMail
ServerSignature Off

Each directive, such as ServerToken, contributes to
a dimension of the configuration space. Notice that a di-
rective can take on one of the many values, for example,
ServerSignature can be one of On, Off, or Email. An
obstacle or a forbidden region is a value of a directive that
is considered to affect the Apache server in negative ways,
and so should be avoided if possible. For instance, if we
set ServerTokens to Full, outside users can learn which
modules are running on the system and which version number
is installed. This enables them to exploit vulnerabilities that

are present in specific versions, and it is recommended to set
ServerTokens to Prod.

There are several approaches to model configuration space
and define forbidden region. and in our framework we will
use OWL (Web Ontology Language). OWL is a language for
describing ontologies, and an ontology is a (formal) descrip-
tion of concepts and their relations.3 We chose OWL-DL as
a starting point for modeling configuration space for several
reasons: (1) OWL-DL is decidable and so any statement in the
underlying logic is either true or false. This allows us to reduce
the number of false errors. (2) OWL-DL is a simple modeling
language and it is easy to express constraints within the lan-
guage. (3) There are a number of off-the-shelf tools available
to reason about the underlying logic, and we did not want to
spend time to write our own reasoner or constraint solver. (4)
OWL-DL is extensible and it allows us to go beyond DL to ex-
press certain anti-patterns that include logical implication. A
model in OWL consists of a Terminological Box (T-box) and
an Assertion Box (A-box). A T-box contains classes and the
relationships between classes, including restrictions on classes,
such as two classes that are defined to be disjoint, and the re-
lations between those concepts. An A-box contains assertions
about specific instances that can relate an instance to a class or
relate two instances with each other.

Our approach to modeling the configuration space and for-
bidden region is quite simple. We represent each dimension as
a class and forbidden regions as constraints on classes. Config-
uration points are then defined as class instances. Now given
a configuration file httpd.conf file (path plan), we check
whether the configuration will collide with anti-patterns using
an off-the-shelf OWL reasoner. The configuration space, even
for Apache server, is intractable, if not infinite, and it is im-
practical or even impossible to synthesis automatically the set
of all obstacle-free configurations. Therefore in our framework
we focus on checking whether a given configuration is in a for-
bidden region or not. The overall structure of our framework
is illustrated in Figure 1. We wrote a simple Perl parser that
essentially translates the httpd.conf file into instances of
A-box.

During our modeling process we observed that there are a
few cases of anti-patterns that cannot (naturally) be expressed
using pure OWL-DL. To express such anti-patterns we then
used OWL-DL-Safe rules [5]. OWL-DL-Safe rules combines
OWL-DL and function-free Horn rules (clauses) by ensuring
that every variable in a rule occurs in a non-DL atom (see Sec-
tion 3 for more details). OWL-DL-Safe rule is once again
decidable, and is more expressive than both OWL-DL and
function free Horn rules. Currently our framework consists
of 60 classes in the T-box, about 15 constraints on classes,
and about 55 properties with constraints. The parser translates
httpd.conf to OWL format generates about 500 A-box el-
ements. Currently we have 3 DL-Safe rules, and we hope to

3http://www.w3.org/TR/2004/REC-owl-features-20040210/#domain

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

Figure 2. The T-box representation of Apache configuration model.

include more DL-safe rules in future. We use the OWL rea-
soner, Pellet, for reasoning about the A-box and T-box and the
Jess Rule Engine for OWL-safe rules.

The rest of the paper is organized as follows: In Section 2
we introduce configuration space model and reasoning capabil-
ities using OWL framework. In Section 3 we discuss OWL-DL
safe rules. In Section 4 we present our experience on analyz-
ing some Apache configuration files. In Section 5 we discuss
related work and conclude in Section 6.

2. Configuration Space

Let C be the configuration space of Apache server, and
q ∈ C a point or configuration in C. Let o ∈ C be an ob-
stacle point and let O = {q ∈ C|q = o} be the set of obstacle
points or forbidden region. An obstacle point is essentially a
configuration that can affect an Apache installation in a nega-
tive way, such as make the server vulnerable to attacks or can
lead to poor performance. The set G = C−O is the set of free
or well-behaved configuration space. In Robotics a free con-
figuration space essentially allows free navigation of a robot.
In our framework a free configuration space will ensure that
an Apache server is well-behaved with respect to the set of
anti-patterns. Unfortunately computing the well-behaved con-
figuration space for Apache is difficult. Recall that our focus
in this paper is to determine whether a given configuration in-
stance qh, as defined in httpd.conf, will “collide” with any
obstacles, that is, qh ∈ O.

In Robotics computing configuration space consists of enu-
merating “contact surfaces” for every pair of features (such as
vertex, edge, texture, etc.) from a robot and obstacles. In our
framework an Apache configuration is a specification of values
of all directives defined by Apache server. In our framework
the specification of values are defined in terms of “classes” and

predicates or relations among classes. In essence we map con-
figuration space to a description logic framework.

2.1. OWL and Description Logic

To simplify the presentation we will use Protégé OWL no-
tation throughout this paper.4 An OWL ontology is made of
classes, instances (also called as individuals), properties.

• We define configuration space in terms of OWL classes.
Each class correspond to a dimension in the configura-
tion space. Each dimension can have a set of values that
“spans” dimension. For example, the class File is a set
of file instances.

• Instances are the objects in the domains of discourse that
we are modeling. In our case, instances are points in the
configuration space.

• Properties are binary relations on instances, and in effect
link two instances. For example, a particular file isIn in
a particular path. A property can be an inverse of another
property. For example, contains can be defined as
being inverse the of isIn property: a file httpd.conf
isIn the path \usr\local\apache\ and the
path \usr\local\apache\ contains the
file httpd.conf. A property can be defined to
be functional, which are single valued properties.
For instance, let us define the isDirectlyIn
property as being functional and then define
httpd.conf isDirectlyIn \usr\local\apache\. Now

if httpd.conf is a also directly in another path,
say, \usr\local\apache\conf\ then we conclude
that the two paths are the same, unless the two paths

4http://protege.stanford.edu/

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

are explicitly stated (i.e., anti-pattern or obstacle) to
be different instances, in which case we trigger an
inconsistency.

2.2. Defining Configuration Classes

Recall that classes in OWL can be related with one another
in a hierarchical relation. A sub-class specializes a super-class.
For example, ConfigurationFile is a sub-class of File.
By default, classes in OWL overlap — an instance can be a
member of more than one class. One can define two classes to
be disjoint, in which case an instance cannot be a member of
both classes.

To reduce the complexity of navigating through collision-
free space, we induce some structure to the configuration so
that we can “carve out” sub-spaces of interest. The only
high level structure that is explicitly commented in the default
httpd.conf are the three different sections of directives: (1)
Global Environment: This section contains directives that af-
fect the overall operation of the Apache server. (2) Main Server
Configuration: This section contains directives that sets up the
main server to respond to requests that are not handled by a
virtual host. (3) Virtual Host Configuration: This section con-
tains directives that sets up virtual hosts which allow Web re-
quests to be sent to different IP addresses or hostnames and
have them handled by the same Apache server process. We
explicitly model these structures in our ontology.

To induce some more structure into the understanding of
the Apache configuration we also use the following concepts
in our ontology: (1) A subject is an active entity that performs
operations or actions. (2) An object is a passive entity and a
subject typically performs some action on one or more objects.
(3) A user is an external user of the Apache server.

We first identify the directives that influence the sub-
ject, the object, and the user aspect of the Apache server.
At the root of the hierarchy is the owl:Thing which is
the base class for all OWL classes. We then define four
main classes of the CROW T-box: (1) crow:Subject,
(2) crow:Object, (3) crow:ExternalEntity,
and (4) crow:SupportEntity.5 The first three
classes crow:Subject, crow:Object and
crow:ExternalEntity correspond to the directives
that influence the subject, the object, and the external entities
(users) aspect of the Apache server. Figure 2 illustrates the
main class hierarchy of the T-box for the Apache configu-
rations. The directives that influence the subject aspect of
Apache server are specialized under crow:Subject. For
example, crow:Server and crow:Applications are
specializations of crow:Subject. We similarly identify
directives that influences the object aspect and specialize them
as sub-classes of the crow:Object. For instance, directives

5We use crow: to define the CROW namespace. All CROW classes,
instances, properties, and rules are part of this namespace.

that influence files, ports, sockets, etc are modeled as special-
ization of the crow:Object class. Similarly directives that
influence external entities such as the users and groups are
modeled as specialization of the crow:ExternalEntity.

For the three sections defined in the de-
fault httpd.conf file (see above) we create
a SectionSettings class that specializes the
Settings class. We then create three specializations
of SectionSettings class. As mentioned above these
are: MainServerSettings, VirtualHostSettings,
and GlobalServerSettings. It is important not only to
model the physical structure of the file, it is also important to
model and categorize the httpd.conf file based on directive
types. We create a dual view of the httpd.conf file since ei-
ther view may be advantageous depending on the application.
In this structure, we create another subclass of Settings
called DirectiveSettings which in turn is classi-
fied into HostContainer, DirectoryContainer,
FileContainer, and GlobalServerSettings, as
before. In effect, this structure categorizes the elements of
the httpd.conf file based on the <Virtual Host>,
<Directory>, and <File> directives. Conceptu-
ally, GlobalServerSettings will contain global
directives that pertain to the server itself. These include
serverRoot, serverTokens, and listen directives.
The HostContainer maps to the <Virtual Host>
directive and also contains the settings of the default host even
though within the actual httpd.conf file these are specified
outside of a <Virtual Host> container, since structure-
wise they are equivalent. The DirectoryContainer class
corresponds to both the <Directory> and <Location>
directives. Finally, the FileContainer class corresponds
to the <File> directive.

2.3. Configuration Instances and Forbidden
Space

A-box contains instances of T-box classes and assertions
about specific instances that can relate an instance to a class or
relate two instances with each other. We wrote a simple Perl
tool to parse an existing httpd.conf file and then gener-
ate an OWL XML file that represents the A-box for CROW.
We import the resulting XML file into the Protégé tool (see
Figure 1). We then check the consistency of the configuration
instance that is imported. In other words, we take a bottom-up
approach for checking consistency of existing httpd.conf
file of an installed Apache server.

Defining forbidden space consists of imposing restrictions
on the elements of T-box and the properties in A-box. We fol-
low a few modeling principles to simplify reasoning in CROW.
OWL does not use the unique names assumption. To im-
plicitly construct unique names, we use an id property that
is functional and is unique for each instances of non-disjoint
classes. This id property will effectively model unique-names

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

Consistency Check T-box Class OWL Assertion Test Case
Error Log is not located
inside Document Root or
any aliased Directory.

HostSettings Necessary Condition:
• not (errorlog some (isIn some (hasAlias some
Location)))

documentRoot /usr/apache
errorLog /usr/apache/error-log

Only CGI Directories
or directories within
CGI Directories have the
option ExecCGI

NotCGIDirectories Necessary and Sufficient Condition:
• Path
• not CGIDirec
• isDirectlyIn some (cgidirec has
notCGIDirectory)
Necessary Condition:
• cgidirec has notCGIDirectory
• pathAssociatedWith only (options only (not
{ExecCGI}))

documentRoot /usr/local/apache
<Directory /usr/local/apache>
options ExecCGI

<Directory>

Access Control for Docu-
ment Root is specified in
httpd.conf file

UnspecifiedPath Disjoint With:
• isDocumentRootOf some HostSettings

documentRoot /usr/local/apache
#does not appear in a
#<Directory> directive

Every Server has exactly
1 ServerRoot defined

ServerContainer Necessary Condition:
• serverRoot exactly 1

serverRoot /usr/local/apache
serverRoot /usr/apache/local

All Ports listened to by
Hosts are listened to by
the Server.

PortsListenedToByServer,
PortsListenedToByHost

(Server)Necessary and Sufficient Condition:
• Port and isListenedToBy some
ServerContainer
• {enumeratedinstances}
(Host)Necessary and Sufficient Condition:
• Port and isListenedToBy some HostContainer
• {enumeratedinstances}
(Host)Necessary Condition:
• PortsListenedToByServer

<VirtualHost host2:443>
.
.

<VirtualHost>
#no Listen directive
#for this port

Besides for root direc-
tory, non-aliased directo-
ries are not specified in
httpd.conf (if it is, prob-
ably an error in directory
name).

NotAliasedDirecs Necessary and Sufficient Condition:
• Path
• not AliasedDirec
• isDirectlyIn some (aliasdirec has
notAliasedDirec)
Necessary Condition:
• aliasdirec has notAliasDirec
Disjoint With:
• {enumeratedinstances} (SpecifiedPaths minus root
directory)

documentRoot /usr/local/apache
<Directory /usr/apache/local>

.

.
<Directory>

ServerSig is on Off,
ServerTokens is on Prod

ServerContainer Necessary Condition:
• serverSig has Off • serverTokens has Prod

• serverSig On • serverTokens Full

Table 1. Consistency rules and checks

assumptions for such instances that we will use implicitly dur-
ing the reasoning process. Intuitively, this essentially creates a
“unique name” for each instances of the class associated with
this property in the A-box since now any two instances can-
not be merged. Table 1 presents a subset of the consistency
checking rules that we implemented in CROW. The table is
self-explanatory and we encourage the reader to go over it in
detail.

OWL’s open world assumption can sometimes complicate
the modeling process. In the Apache server the set of ports
listened to by a virtual host must be a sub-set of the set
of ports listened to by the server. This can be expressed
in the httpd.conf file. Unfortunately modeling this us-
ing the “open world assumption” can lead to some confu-
sion. To explain this further, let us create a property called
isListenedToBy that relates an instance of a Port class
with instance of a HostContainer class or an instance of a
ServerContainer class. We then want to restrict that the
set of ports listened to by an instance h of HostContainer

to be a subset of the set of ports listened to by an instance s of
ServerContained. With open world assumption, when a
new port p is created that is not listened to by s but is listened
to by h, the reasoner will simply relate p as being listened to
by s. Rather we want the reasoner to trigger an inconsistency
error in this case. To enable such inconsistencies we create
an “enumerated” sub-class of the Port class for those ports
that are restricted to be listened to by some instance of the
ServerContainer. Such enumerated classes behave like
closed-world classes, using which we can track such inconsis-
tencies.

Whenever the imported A-box instances do not meet the
constraints and restrictions of the elements of T-box and prop-
erties in A-box the logic reasoner will trigger inconsistencies
in the model. For example, two classes may be specified to
be disjoint, and yet an instance in the A-box is defined to be a
member of the two disjoint classes. This is clearly inconsistent
with the model and the reasoner will return an inconsistency
error. In practice, most inconsistencies stem from the fact that

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

a class and its complement must be disjoint and then deriving
that an instance is a member of both such classes.

3. OWL DL Safe Rules

During the development of CROW we observed that there
are certain anti-patterns that cannot naturally be expressed us-
ing the base OWL DL. We wanted to confine CROW reason-
ing to be decidable, and yet more expressive than the base
OWL DL. We then explored the possibility of using OWL
DL Safe Rules (OSR), introduced by Motik et al [5], which
combines OWL DL and function free Horn clause in a cer-
tain decidable way. DL safe rules are Horn Rules, where each
variable in the rule occurs in a non-DL-atom in the rule body.
These rules allow the extra expressivity of non-tree-structured
relationships between variables and yet even in combination
with OWL DL still maintain the decidability property. A pred-
icate O that is not part of the description logic is chosen. The
predicate is applied to each individual in the A-box and for
DL-Safe rules, each variable in a rule appears in an atom that
consists of this predicate [5]. Intuitively, this creates a closed-
world policy only for those individuals that are directly par-
ticipating in the rules. However, the existential operator can
still be used to infer existence of individuals within the model.
These inferences can actually affect the way the rules are ap-
plied, although the inferred individuals do not appear explicitly
in the rules. Therefore, adding DL-Safe Rules is not equivalent
to just enforcing a closed-world policy on the total reasoning.
The resulting hybrid of DL and DL-Safe Rules is decidable.
The following is an example of OSR that we implemented in
CROW.

UnSpecifiedPath(?x) ∧ isDirectlyIn(?x, ?y) ∧

associatedWithDirectory(?z, ?y) ∧ allowFrom(?z, ?a) ∧

associatedWithDirectory(?b, ?x)→ allowFrom(?b, ?a)

Currently there is no open-source reasoner available for the
combined reasoning. We use SWRL rules and a SWRL Rule
Engine, called Jess, to add rules to our CROW model [4]. Cur-
rently, the way OWL interfaces with the SWRL Rule engine
is that the DL Reasoner and the Rule Engine run in tandem.
When the Rule Engine is initiated, the relevant individuals,
classes, and properties are exported to the Rule Engine. Then
the Rule Engine runs and the new knowledge it outputs is im-
ported into the A-box of DL model. Then the DL Reasoner
is initiated and reasons on the combination of A-box and T-
box, new inferences are made and then the Rule Engine can
run again. This process is guaranteed to reach a fixed point,
but it may not catch all inconsistencies that a combined rea-
soner does. We hope to use a more powerful reasoner, when
available, to possibly find more inconsistencies in CROW.6

6It is important to keep in mind that SWRL, in its full generality, is unde-
cidable. OWL-DL-Safe rule language is still a decidable language.

4. Evaluation

Our product partners approached us to help them with ma-
jor issues in understanding problems related configuration of
large data center. So we started with an incubation project
to analyze configuration of Apache Web servers. When we
started working on the CROW project we were deliberating
which modeling language to adopt for checking consistencies
of configurations. Our long term goal is to develop a CROW-
like tool for checking configurations of integrated applications
in the context of a large data center. We explored the pos-
sibility of using modeling languages such as CIM (Content
Information Model) and UML (Unified Modeling Language).
Unfortunately these modeling languages are either informal or
semi-formal and one typically has to write procedural logic or
custom solvers for reasoning about the models. Our experi-
ence in using OWL, OSR, and the off-the-shelf tools has been
quite positive.

We currently encode about 15 security constraints and rules
within the ontology. Because the structure of DL lends itself
to this purpose, we are able to express this with only one or
two lines of “code” for each constraint. A small apache con-
figuration file will input about 500 assertions into the A-box.
Therefore, our method gives a very lightweight way to check
for many inconsistencies. If the consistency checks were en-
coded in a standard programming language, it would require
need hundreds of lines of code to achieve this expressiveness.
We tested a few production-level Apache httpd.conf files
for consistencies. In one particular Wiki application we found
the following inconsistencies.

• ServerTokens is set to Full.

• ServerSignature is On.

When ServerTokens directive is set to Full, outside
users can learn which modules are running on the system
and which version number is installed. This enables them
to exploit vulnerabilities that are present in specific ver-
sions. We recommend that ServerTokens should be
set to Prod ServerSignature should be set to Off.

• C:/xampp/xampp/htdocs (the document root) has
ExecCGI option.

• C:/xampp/xampp/webalizer has ExecCGI op-
tion.

It is best to have one location for CGI scripts. In this
way, it is easier to administer and the environment the
CGI scripts run in can be more controlled. It is especially
a dangerous practice to have CGI enabled in the Docu-
ment Root directory. Any CGI scripts in these directories
should be moved to the cgi-bin directory.

We also ran our reasoner on other httpd.conf sample
files voluntarily submitted and found the following errors:

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

1. /home/www/default/web/WWW was desig-
nated as Document Root but never specified within
a <Directory> directive.

2. /var/www/cgi-bin was specified in a
<Directory> directive without being aliased.

We also wrote several unit test cases of Apache configura-
tions to verify our modeling approach. In particular we also
modeled the best practice rules given by Sinz et al [7]. Sinz
et al. use Common Information Model (CIM) framework for
modeling and verifying configuration properties of the Apache
servers. Table 2 shows the CIM model and the CROW model
for the set of best practices given by Sinz et. al. We can easily
and intuitively express all of Sinz et al. rules in CROW. Addi-
tionally, we extend some of their rules in a way that is simple
in our model but cannot be done in their framework. For ex-
ample, we changed the rule that Error Log cannot be located
inside Document Root, to Error Log cannot be located inside
any aliased Directory. Since Sinz et al. does not model the
Directories themselves, but only the names of directories as
strings, they are unable to express this more general property.

One aspect of an Apache configuration that we have not
yet addressed in CROW is the Apache override policy behav-
ior done through .htaccess files. Apache configuration al-
lows .htaccess files to be specified for directories whose
permissions may be overridden. The .htaccess file can
override the permissions specified in the main httpd.conf file
on a per directory basis. On the surface, the properties of the
.htaccess files seem to require non-monotonic reasoning.
This is because original permissions specified in the httpd.conf
file can be reversed by the .htaccess file. We can get
around this problem by enforcing a closed-world policy on the
.htaccess files: All .htaccess files that will be used must
be known at the time the Apache model is created. However,
this may not completely reflect the nature of the .htaccess
files. We are currently looking at the �.haccess file semantics
and its implication to CROW modeling.

5. Related Work

CROW is closely related to the CIM model of Apache con-
figuration proposed by Sin et al. [7]. CIM Schemas are rep-
resented by UML Diagrams.7 Association classes are used
to model relationships between objects. Although, CIM is a
popular modeling language for data modeling, it is a semi-
formal model, unlike OWL. Sinz et al. define a custom for-
mal semantics by mapping their CIM to a logic that is inspired
by description logic. Unfortunately, the resulting logic is not
decidable and also Sinz et al. wrote a custom reasoner and
constraint solver for analyzing the consistency properties of
the Apache configuration. Our work uses off-the-shelf mod-
eling tool Protégé with off-the-shelf reasoner Pellet and Jess.

7http://www.omg.org/technology/documents/formal/uml.htm

We also confine our logic to a decidable sub-set that includes
OWL-DL and OSR. Although one can envision security best
practices that cannot easily be expressed using decidable logic,
we believe that in practice this may not be an issue. Finally,
Sinz et al. do not follow the CC principle for classifying and
modeling configuration. We believe our approach of using
the CC classification principle can help standardize vocabulary
and ontology for modeling configurations.

Eilam et al. [3] propose a Model-Driven Architecture
(MDA) approach for modeling configuration that complements
our work. They use a refinement engine that automatically
searches the space of service model transformations to pro-
duce a set of possible service physical deployment topologies
and configurations. Agrawal et al. [1] describe how to vali-
date a storage area network configuration based on a list of
policies that has been created. They define Storage Area Net-
works (SANs) as an alternative storage pradigm that allows
storage to be shared among servers using fast interconnects
[1]. Agrawal et al. define a policy-based SAN configuration
validation system that can be used to specify, store and evalu-
ate configuration policies for SANs. They model SAN compo-
nents and major concepts such as host, switch, storage device,
host bus adapter (HBA), port-controller, port, link, fabric, and
zone. Additionally, to extend the expressiveness of logical op-
erators and comparison operators, they introduce five new op-
erations on collections of elements. Based on this, they create
a policy evaluator that operates on the boolean expressions that
represent the policy conditions. They also compile a list of 64
policies that their evaluator validates.

Raghavachari et al. [6] propose a method for finding the
best configuration parameters for a specific application. They
propose varying the configuration parameters over all values
within a specific range and testing the resulting configuration
files to see which parameters are best. They randomly choose
the value of the configuration parameter and continue the pro-
cess until all possible values have been checked. This method
does not check for effects of interacting configuration param-
eters since each one is tested independently. It is can also po-
tentially generate a huge number of configurations that must
be analyzed.

6. Conclusions

In this paper we presented the framework of CROW that
follows the principle of the CC for classifying the elements (di-
rectives) of the Apache configuration. We used an off-the-shelf
tool and reasoner for modeling and analysis of configurations.
We modeled several well known best practices for configura-
tions and used them to analyze extant production-level Apache
configurations. We found a few inconsistencies in the con-
figuration files, including innocuous ones. We are currently
extending CROW to modeling and analyzing configurations
of interdependent systems, such as applications running a data

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

Constraint CIM Model CROWModel
The ServerRoot property
is defined exactly once
(per server)

∃=1ServerProperties.ServerRoot (ServerContainer)Necessary Condition: (an additional enumer-
ated class to simulate closed-world was created for all objects
that have at least one serverRoot defined)
• serverRoot exactly 1
• associatedWithServer exactly 1

MinSpareServer is less
than MaxSpareServer

[ServerConfig](ServerProperties.MinSpareServer
<ServerProperties.MaxSpareServer) ∧
[ServerConfiguraion](ServerProperties.MaxSpareServer > 1)

SWRL Rule:
• ServerContainer(?x) ∧
minSpareServer(?x, ?y) ∧
maxSpareServer(?x, ?z) ∧
lessthanorequal(?z, ?x) ∧ Global(?a) →
badMinMax(?a, “true′′)
• ServerContainer(?x) ∧
maxSpareServer(?x, ?y) ∧
lessthanorequal(?y, ?1) ∧ Global(?a) →
badMax(?a, “true′′)
(Global)Necessary Condition: (there will always be exactly one
instance of global in the A-box)
• badMinMax has “false” • badMax has “false”

Each virtual host has its
own unique server name

|HostProperties.ServerName| = |HostConfig.Name| serverName property: (an additional enumerated class to simu-
late closed-world was created for all objects that have at least one
serverName defined)
• domain: HostSettings • range: Name
• functional • inverseFunctional

Error Log should not be
stored in DocumentRoot
or a subdirectory

[HostProperties] ¬isPrefixOf(HostProperties.DocumentRoot,
HostProperties.ErrorLog)

Necessary Condition:
• not (errorlog some (isIn some (hasAlias some
Location)))

The address/port pair of
each virtual host must be
an address/port the Web-
server is listening to

[HostConfig]HostProperties. < HostAddress, HostPort >
⊆ ListenSetting. < ListenAddress, ListenPort >

(Server)Necessary and Sufficient Condition:
• Port and isListenedToBy some ServerContainer
• {enumeratedinstances}
(Host)Necessary and Sufficient Condition:
• Port and isListenedToBy some HostContainer
• {enumeratedinstances}
(Host)Necessary Condition:
• PortsListenedToByServer

A configuration name and
PID file must be specified
for the Web-server

∃ServerProperties.ConfigName ∧∃ServerProperties.PIDFile (ServerContainer)Necessary Condition:
• configName min 1 (an additional enumerated class to sim-
ulate closed-world was created for all objects that have at least
one configName defined)
• pidFile min 1 (an additional enumerated class to simulate
closed-world was created for all objects that have at least one
PIDFile defined)
• associatedWithServer exactly 1

Table 2. Comparing CROW and CIM model

center.
Acknowledgement: We thank Gabriela Cretu, Achille Fokoue, and
Doug Schales for technical discussion in various stages of our work.
We also want to thank Larry Koved, Josyula Rao, and Doug Schales
for management support.

References

[1] Dakshi Agrawal, James Giles, Kang won Lee, and Kaladhar
Voruganti. Policy based validation of san configuration. In Policy
2004: IEEE International Workshop on Policies for Distributed
Systems and Netoworks, 2004.

[2] Ryan C. Barnett. Preventing Web Attacks With Apache. Addison-
Wesley, Upper Saddle River, NJ, USA, 2006.

[3] Tamar Eilam, Michael H. Kalantar, Alexander V. Konstantinou,
and Giovanni Pacifici. Reducing the complexity of application
deployment in large data centers. In IM 2005: Ninth IFIP/IEEE

International Symposium on Integrated Network Management,
pages 221–234, 2005.

[4] I. Horrocks and P. F. Patel-Schneider. A proposal for an owl rules
language. In Proceedings of the 13th Int’l World Wide Web Conf.
ACM, 2004.

[5] Boris Motik, Ulrike Sattler, and Rudi Studer. Query answering
for owl-dl with rules. Journal of Web Semantics, 3(1):41–60,
2005.

[6] Mukund Raghavachari, Darrell Reimer, and Robert D. Johnson.
The deployer’s problem: Configuring application servers for per-
formance and reliability. In ICSE ’03: International Conference
on Software Engineering, pages 484–489, 2003.

[7] Carsten Sinz, Amir Khosravizadeh, Wolfgang Kuchlin, and Vik-
tor Mihajlovski. Verifying cim models of apache web-server
configuration. In QSIC ’03: Third International Conference on
Quality Software, pages 290–297. IEEE Computer Society Press,
2003.

2007 IEEE International Conference on Services Computing (SCC 2007)
0-7695-2925-9/07 $25.00 © 2007

