
Efficient Concurrent Covert Computation of
String Equality and Set Intersection?

Chongwon Cho1 ??, Dana Dachman-Soled2 ? ? ?, and Stanis law Jarecki3 †

1 Information and Systems Science Laboratory, HRL Laboratories
2 Department of Computer Science, University of Maryland, College Park

3 Department of Computer Science, University of California, Irvine

Abstract. The notion of covert computation, an enhanced form of se-
cure multiparty computation, allows parties to jointly compute a func-
tion, while ensuring that participating parties cannot distinguish their
counterparties from a random noise generator, until the end of the pro-
tocol, when the output of the function is revealed, if favorable to all
parties. Previous works on covert computation achieved super-constant
round protocols for general functionalities [16, 5], with efficiency at least
linear in the size of the circuit representation of the computed function.
Indeed, [9] showed that constant-round covert computation of any non-
trivial functionality with black-box simulation is impossible in the plain
model.
In this work we construct the first practical constant-round covert pro-
tocol for a non-trivial functionality, namely the set-intersection func-
tionality, in the Random Oracle Model. Our construction demonstrates
the usefulness of covert subprotocols as building blocks in constructing
larger protocols: We show how to compile a concurrently covert proto-
col for a single-input functionality, e.g. string equality, into an efficient
secure and covert protocol for a corresponding multi-input functionality,
e.g. set intersection.
Our main contributions are summarized as follows:
– We upgrade the notion of covert computation of [5] to concurrent

covert computation.
– We provide a general compiler that converts concurrent covert pro-

tocols for single-input functionalities to concurrent covert protocols
for corresponding multi-input counterparts of these functionalities,
at linear cost, in the Random Oracle Model.

– To demonstrate the usefulness of our compiler, we construct a con-
currently covert string equality protocol and then apply our compiler
to achieve a two-message concurrent covert protocol for Set Intersec-
tion (SI) with a linear cost in the Random Oracle Model.

? This work was done in part while the authors were visiting the Simons Institute
for the Theory of Computing, supported by the Simons Foundation and by the DI-
MACS/Simons Collaboration in Cryptography through NSF award #CNS-1523467.

?? A part of work was performed while visiting University of California, Irvine
? ? ? Work supported in part by NSF CAREER award #CNS-1453045 and by a Ralph

E. Powe Junior Faculty Enhancement Award.
† Work supported in part by NSF CAREER award #CNS-0747541.

1 Introduction

Steganography addresses a security question that is not usually considered in
cryptography, namely how to make the very fact that a (secure) protocol is be-
ing executed, hidden from an eavesdropping adversary. Such hiding of a protocol
instance is, in principle, possible if the public channels connecting the commu-
nicating parties are steganographic in the sense that they have intrinsic entropy.
A protocol is steganographic, or covert, if its messages can be efficiently injected
into such channels in a way that the resulting communication cannot be dis-
tinguished from the a priori behavior of these channels. A simple example of
a steganographic channel is a random channel, which can be implemented e.g.
using protocol nonces, random padding bits, lower bits of time stamps, and var-
ious other standard communication mechanisms which exhibit inherent entropy.
Assuming such random communication channels, if protocol participants encode
their protocol messages as binary strings which are indistinguishable from ran-
dom, they can inject their out-going messages into the random channel, and
interpret the information received on those channels as the protocol messages
from other parties. The participants must synchronize the timing of using these
channels, so they know which bits to interpret as protocol messages, but this
can be public information, because the covertness of the protocol implies that
the exchanged messages cannot be distinguished from the a priori behavior of
these random channels.

Covert computation was formalized for the two-party setting by von Ahn,
Hopper and Langford in [16] and in the multi-party setting by Chandran et
al. in [5], as a protocol that lets the participants securely compute the desired
functionality on their inputs, with the additional property that no participating
party can distinguish the other participants from “random beacons” that send
random binary strings of fixed length instead of proscribed protocol messages,
until the end of the protocol, when the output of the function is revealed, if
favorable to all parties. Both [16] and [5] show protocols for covert computation
of any functionality which tolerates malicious adversaries, resp. in the two-party
and the multi-party setting, but the costs of these protocols are linear in the size
of the circuit representation of the computed function. Moreover, these protocols
are not constant-round, and the subsequent work of [9] showed that this is a fun-
damental limitation on maliciously-secure covert computation (with black-box
simulation) in the standard model, i.e., without access to trusted parameters
or public keys. In a recent work, Jarecki [12] showed a constant-round covert
mutual-authentication protocol, but that protocol satisfied only a game-based
definition of an authentication problem. This leaves a natural open question
whether useful two-party (or multi-party) tasks can be computed covertly in a
more practical way, with constant-round protocols, in stronger but commonly
assumed computational models, like the Random Oracle Model (ROM), or equiv-
alently the Ideal Cipher Model [6, 10].

Our contributions: In this work we construct the first practical two-message
covert protocol for the set-intersection functionality in the Ideal Cipher Model.

That is, two parties, where each party holds a private set of size n, compute the
intersection of their private sets. If the two input sets do not have an intersection,
then no party can tell apart the following two cases: (1) the other party did not
participate in the protocol execution, and (2) the other party did participate but
the intersection was empty. Towards this goal, our contribution is three-fold:

(1) We introduce an upgraded version of the covert computation definition of
[5], concurrent covert (C-covert) computation. We provide a definition of C-covert
computation that enjoys advantages over the “single-shot” definition of covert
computation in [5] because multiple instances of such protocols can execute
concurrently, and the covertness and security properties are assured for each
protocol instance.

(2) We show that covert protocols can serve as useful tools in constructing secure
(and covert) protocols. Namely, we exhibit a general compiler which converts a
covert protocol (supporting a concurrent composability) for a single-input func-
tionality, e.g., a String Equality Test (SEQ) functionality which takes two strings
and outputs 1 if they are equal and 0 (or ⊥) otherwise, into a covert protocol
computing a corresponding multi-input functionality, e.g. which in the case of
SEQ would be a Set Intersection (SI) functionality. Our compiler is instantiated
in the Ideal Cipher Model (equivalently the Random Oracle Model [6, 10]) and
it preserves the covertness and the round complexity of the underlying proto-
col for the single-input functionality, at the increase of the computational and
bandwidth costs which is only linear in the number of inputs contributed by each
party. (Technically, this compiler is slightly stronger because the covert protocol
for the underlying single-input functionality must only satisfy a weaker version
of the C-covert computation.) The construction of our compiler is rooted in the
idea of the Index-Hiding Message Encoding (IHME) scheme of Manulis, Pinkas,
and Poettering [14]. While the security of IHME scheme is defined in terms of
a game-based definition, the security of our compiler is generalized and defined
in terms of simulation-based security, while the instantiation is provided in the
Ideal Cipher Model.

(3) To make this general compiler result more concrete, we show an example of
a two-party single-input functionality for the SEQ functionality (here presented
in a one-sided output version), which on a pair of inputs (x, y) outputs (b,⊥)
where b = 1 if x = y and 0 otherwise. The two-party multi-input functionality
corresponding to the SEQ functionality is a Set Intersection (SI) functionality
which takes a pair of vectors ((x1, ..., xn), (y1, ..., yn)) as its inputs, and out-
puts ((b1, ..., bn),⊥) where bi = 1 iff there exists j s.t. xi = yj . We construct
a C-covert protocol for SEQ, and by applying the above compiler we obtain a
C-covert protocol for the Set Intersection (SI) functionality. Since the C-covert
protocol we show for SEQ takes 2 rounds and O(1) group exponentiations, the
resulting C-covert Set Intersection protocol takes 2 rounds and performs O(n)
group exponentiations. This compares well to existing standard, i.e. non-covert,
Set Intersection protocols, e.g. [13, 8]. Standard SI protocols have received lots of
attention,, and in particular there are multiple solutions which trade off public

key operations for increased communication complexity, e.g. based on garbled
circuits [11], Bloom Filters [7] or OT extensions [15] (see also the last refer-
ence for comparisons between various SI protocols). Still, we take our results as
showing that covertness can be achieved for non-trivial functionalities of gen-
eral interest, like the SI functionality, at the cost which is comparable to the
non-covert protocols for the same functionality.

1.1 Technical Overview

Concurrent Covert Computation. We introduce a new notion of concurrent covert
(C-covert) computation. Covert computation was first introduced by von Ahn
et al. [16] in the two-party setting. Later, Chandran et al. [5] formulated the
notion of covert multiparty computation based on the simulation paradigm. In
this work, we initiate a study of composable covert computation by consid-
ering the case of of concurrent self-composition. We give a formal definition of
concurrent covert computation, which provides a framework for arguing whether
a protocol remains covert while many instances of this protocol are executed con-
currently in the system. In particular, our notion of C-covert computation follows
the framework of universal composability (UC) by Canetti [4] although our no-
tion has a limitation on its composability property compared to the notion of
UC. Still, the notion we define upgrades the covert (“one-shot”) computation
notion of Chandran et al. by enabling concurrent and parallel self-composition
of a covert protocol. Such a composability guarantee is at the crux of our ap-
plication which compiles single-input (weakly) C-covert protocol to a C-covert
protocol for the corresponding multi-input functionality. We note that our focus
here is on concurrent composability and not full universal composability (UC)
because only the former notion is required by the single-input to multi-input
compiler: Our compiler executes multiple instances of the covert protocol for the
single-input functionality, and hence its security requires that the underlying
covert protocol is self-composable.

Intermediate security notions. In the course of achieving concurrent covert se-
curity, we introduce a special class of functionalities that we call indexed single-
input functionalities. Namely, we call a two-party functionality F indexed single-
input (ISI) if there exists an index function I s.t. for all inputs (x, y) to F we
have that F(x, y) = ⊥ if I(x) 6= I(y). We also introduce an intermediate secu-
rity notion for ISI functionalities, called Weakly Concurrent Covert (in short,
wC-covert) computation, which is a relaxation of C-covert computation. The
high-level insight for this relaxation is that the simulator is allowed to possess
additional advice which enables the simulation to go through. This relaxed no-
tion of C-covert is sufficient in our compiler because the compiler construction
ensures that the simulator has access to this advice, and hence it suffices that
the underlying covert protocol is simulatable given this advice.

From wC-covert single input protocol to C-covert multi-input protocol. We con-
struct, in the Ideal Cipher Model, a compiler that converts any wC-covert pro-
tocol for ISI functionality to C-covert protocol for the indexed mult-input (IMI)

version of the same functionality, where the IMI functionality on inputs x =
(x1, ..., xn) and y = (y1, ..., yn) is defined, in short, as an n× n execution of the
underlying ISI functionality on pairs of matching inputs, i.e. pairs (xi, yj) s.t.
I(xi) = I(yj). The compiler builds on the compiler idea proposed by Manulis,
Pinkas, and Poettering [14]. The compiler of [14] converts a particular proto-
col for single-input functionality, which in their case was a Secret Handshake
protocol (see e.g. [1]), into a secure protocol for multi-input functionality, e.g.
a multi-input version of a Secret Handshake, where each party puts a vector of
credentials, which are then pair-wise matched by the functionality.

In this work, we give a general-purpose version of this compiler, where we
show that covertness and self-composability are the crucial properties needed of
the protocol for the single-input functionality to be compiled. And this shows,
very interestingly, that covertness is not just an interesting goal in itself but
also can be useful as a tool in building more efficient (e.g. linear time) two-party
protocols for multi-input functionalities. We exemplify it with the construction of
C-covert Set-Intersection protocol secure under Decisional Diffie-Hellman (DDH)
assumption in the random oracle model, which uses O(n) exponentiations and
O(n polylog n) multiplications of group elements where n is the number of
elements in the set contributed by each party. This compares quite well to the
existing non-covert SI protocols (see the discussion of various SI protocols in
[15], although that discussion concentrates on efficiency inthe honest-but-curious
setting).

Organization. In Section 2, we introduce the notions of C-covert computation,
the indexed single-input and multi-input functionalities (ISI and IMI), and the
related notions such as wC-covert computation, which will be utilized by our
ISI-to-IMI compiler. In Section 3 we present the construction of compiler which
converts a wC-covert protocol for a single-input (ISI) functionality into a C-covert
protocol for the multi-input (IMI) version of this functionality, in the Ideal Ci-
pher Model. In Section 4, we present an application of this compiler by exhibit-
ing a wC-covert two-message O(1)-exponentiations covert protocol for the SEQ
functionality in the Random Oracle Model.

2 Preliminaries

2.1 The Ideal Cipher Model

The ideal cipher model is an idealized model of computation in which entities
(i.e., parties) has a public accessible to a ideal (random) block cipher. Such
ideal cipher is a block cipher indexed by a key which is a k-bit string (or a
field element) s.t. each key k defines a random permutation on l-bit strings. All
entities in the ideal cipher model can make encryption and decryption queries
to the cipher by specifying its index. In this work, we denote an ideal block
cipher by Ψk : {0, 1}l → {0, 1}l and its inverse by Ψ−1k : {0, 1}l → {0, 1}l. Coron
et al. [6, 10] showed that the ideal cipher model is equivalent to the Random
Oracle Model (ROM), first formalized by Bellare and Rogaway [2]. Therefore,

all results in this work can be translated into the same results in the Random
Oracle Model. Throughout this work, we use these two names interchangeably.

2.2 Concurrent Covert Computation

We provide the definition of concurrent covert computation (C-covert) for a given
functionality. Our definition of C-covert computation follows the framework of
Universally composability (UC) by Canetti [4] as well as the definition of stand-
alone (i.e. “single-shot”) covert computation given by Chandran et al. [5]. Note
that we provide the definition of concurrent covert computation for the multi-
party case but in the remainder of the paper we will concentrate solely on the
two-party functionalities and protocols, leaving general multi-party protocols
to future work. Even though our definition builds upon the UC framework,
its composability guarantee is restricted to concurrent self-composition. The
main reason for this restrictiveness is that the definition guarantees only self-
composability of covert computation for functions, i.e. not for general reactive
functionalities as in the case of standard UC definition of Canetti [4]. We make
this definitional choice because it is alrady sufficient in many applications, as
exemplified e.g. by the compiler construction we present in this paper. More-
over, composing functionally distinct covert protocols is a challenge. Consider
for example a protocol Π formed as a composition of protocols Π1 and Π2,
where protocol Π1 runs Π2 as a subroutine, and note that an adversary might
discover the participation of honest parties in the protocol from the outputs of
subroutine Π2 before the completion of protocol Π. In this work we concentrate
on concurrent covertness and leave establishment of the framework of fully UC
covert computation for future work.

Intuitively, the differences between the concurrent covert notion for function-
ality F we define below and the standard notion of concurrent computation for
F is that (1) F’s inputs and outputs are extended to include a special sign ⊥
designating non-participation; (2) F is restricted to output a non-participation
symbol ⊥ to each party if any of these parties contributed ⊥ as its input; and
(3) the real-world protocol of an honest party on the non-participation input ⊥
is fixed as a “random beacon”, i.e. a protocol which sends out random bitstrings
of fixed length independently of the messages it receives.

The Ideal Model. The definition of the ideal model is the UC analogue of the
ideal model of Chandran et al. [5], except that composability guarantees are
restrictted to self-composition. The ideal process involves an ideal functionality
F , an ideal process adversary (simulator) Sim, an environment Z with input z,
and a set of dummy parties P1, . . . , Pn. Parties may input a value x ∈ {0, 1}k to
the functionality or a special symbol ⊥ to indicate that they do not participate
in the protocol. Let x denote the vector of inputs (including ⊥) of all parties.

Similarly to the stand-alone covert computation notion of [5], an ideal func-
tionality F in the C-covert computation is defined by a pair of functions f, g,
where g : {{0, 1}k ∪ {⊥}}n → {0, 1} is a favor function where g(x) = 0 if and
only if x is either a non-favorable input (i.e. inputs on which parties want to hide

their participation, e.g. two distinct strings in the case F is SEQ) or a subset of
parties set their inputs to ⊥ (which indicates that those parties do not partici-
pates in the computation). The function f : {{0, 1}k∪{⊥}}n → {{0, 1}k∪{⊥}}n
is the actual functionality to be jointly computed, and it is restricted so that
f(x) = y ∈ {{0, 1}k}n if g(x) = 1, and f(x) = {⊥}n if g(x) = 0. In other words,
function f outputs non-bot outputs if and only if the output of g on the inputs
is favorable. We note that g and f can be randomized functions, in which case
functionality F picks the randomness which is appended to input x before g and
f execute.

Let IdealF,Sim,Z(k, z, r) denote the output of environment Z after interacting
in the ideal process with adversary S and ideal functionality F , on security
parameter k, input z, and random input r = rZ , rSim, rF as described above. Let
IdealF,Sim,Z(k; z) denote the random variable describing IdealF,Sim,Z(k, z, r) when
r is uniformly chosen. We denote the distribution ensemble of IdealF,Sim,Z(k; z)
by {IdealF,Sim,Z(k, z)}k∈N ;z∈{0,1}∗ .

The Real Model. The definition of the real model is also the UC analogue of
the real model of Chandran et al. [5]. It is as the real model in the standard UC
security model, except that each honest party on the non-participation input
⊥ is assumed to execute a “random beacon” protocol, i.e. to send out random
bitstrings of lengths appropriate to a given protocol round. Let RealΠ,A,Z(k, z, r)
denote the output of environment Z after interacting in the ideal process with
adversary A and parties running protocol Π on security parameter k, input z,
and random tapes r = rZ , rA, r1, . . . , rn as described above. Let RealΠ,A,Z(k; z)
denote the random variable describing RealΠ,A,Z(k, z, r) when r is uniformly
chosen. Similar to the notations in the ideal model, we denote the distribution
ensemble of RealΠ,A,Z(k, z, r) by {RealΠ,A,F (k, z)}k∈N ;z∈{0,1}∗ .

Definition 1. Let n ∈ N . Let F be an ideal functionality and Π be an n-party
protocol. We say that Π concurrently securely realizes F if for any adversary A
there exists an ideal-process adversary Sim such that for any environment Z,

{IdealF,Sim,Z(k, z)}k∈N ;z∈{0,1}∗
c
≈ {RealΠ,A,Z(k, z)}k∈N ;z∈{0,1}∗ .

2.3 Indexed functionalities

Below we define two special classes of functionalities, ISI and IMI, which specify
syntactic requirements on the functionalities involved in the compiler described
in Section 3. The first notion, of Indexed Single-Input (ISI) two-party functional-
ity, is a syntactic constraint which makes such function subject to a compilation
from a “single-input” to a “multi-input” functionality. The second notion, of In-
dexed Multi-Input (IMI) two-party functionality, describes the functionality that
results from such compilation, as it is defined by the underlying ISI functionality
and the numbers of inputs contributed by each party. Finally, in definition 4, we
define a security requirement on a protocol for computing some ISI functional-
ity F which is a technical relaxation of the C-covert notion of definition 1, and

which turns out to suffice for the compilation procedure described in Section 3
to produce a C-covert protocol for the IMI functionality corresponding to F.

Definition 2 (Indexed single-input two-party functionalities.). F is said
to be an indexed single-input (ISI) two-party functionality (over domain D), with
an index function I, if on a pair of inputs (x, y) ∈ D×D it outputs (outA, outB)
where outA and outB are outputs to A and B respectively s.t. outA = outB =⊥
whenever I(x) 6= I(y).

Many natural functionalities are of the ISI type. The notion of an “index
agreement” between parties’ inputs appears natural especially in the case of
functionalities which one would want to compute covertly. Note that the notion
of covert computation for F involves an admission function g on inputs s.t. if
g(x, y) = 0 then F outputs ⊥ to all parties, in which case neither party can
distinguish its counter-party from a random beacon. The notion of an index
function I specializes this agreement function by requiring that g(x, y) = 0
whenever I(x) 6= I(y). Consider the case of F being a PKI-based authentication
policy verification, a Password Authenticated Key Exchange (PAKE), or a String
Equality (SEQ) test. In each of these cases the inputs have to “match” for the
function to return a positive output. In the case of PAKE and SEQ, the index
function can be an identity, as both functionalities might want to return ⊥ if x 6=
y, while in the first case function I can output the hash of a public key, either the
public key held by the verifier or the public key which issued the certificate held
by the prover. Note that an ISI functionality models a computation where each
party contributes a single such input, e.g. a string, a password, or a certificate,
etc. Hence, a natural extension of any ISI functionality F is a multi-input version
of this functionality, which we denote F̃, where each party can input a vector
of n such inputs, and F̃ computes a pair-wise matching of these inputs (out of
n2 input pairs) and then runs F on input pairs which match successfully. In the
following we present a relaxed version of such multi-input functionality where
the number of inputs that a malicious party can enter into the functionality
might deviate by some δ from the number of honest party’s inputs.

Definition 3 (Indexed δ-relaxed multi-input two-party functionalities.).
Let D be the domain of inputs, I be a function defined on D, and F be an
indexed single-input two-party functionality over D with an index function I.
Let F̃ be a two party functionality which for some integer δ ≥ 0, takes input
x = (x1, . . . , xn1) from party A, and input y = (y1, . . . , yn2) from party B,
where n1, n2 ∈ [n, n+ δ] and xi, yj ∈ D for every i ∈ [n1] and j ∈ [n2].

F̃ is said to admit input x (resp. y) if I(xi) 6= I(xj) (resp. I(yi) 6= I(yj))
for all i, j ∈ [n1] (resp. i, j ∈ [n2]). Then, F̃ is said to be an indexed δ-relaxed
multi-input (IMI) two-party functionality corresponding to F if F̃(x,y) computes
its output as follows:

1. If F̃ does not admit inputs x or y, then it outputs (⊥,⊥).
2. F computes output sets SA and SB as follows: It initializes SA and SB as

empty sets, and then for each pair of inputs (xi, yj) for (i, j) ∈ [n1] × [n2]

s.t. z = I(xi) = I(yj), computes (outA, outB) as an output of F on (xi, yj),
and if outA or outB 6=⊥, then it adds (z, outA) to SA and (z, outB) to SB.
Note that this computation invokes O(n) instances of F because if x and y
are admitted by F̃ then there can be at most min(n1, n2) pairs (xi, yj) s.t.
I(xi) = I(yj). Finally, if SA and SB are nonempty, then F̃ outputs SA to
party A and SB to party B. Otherwise it outputs ⊥ to both parties.

When δ = 0 where the size of inputs from both parties is equal, we simply
call F̃ an indexed multi-input two-party functionality corresponding to F.

2.4 Relaxed Covertness Notion for ISI Protocols

To utilize the full power of our ISI-to-IMI compiler construction we introduce a
relaxed notion of C-covert security applicable to ISI functionalities, which we call
“Weakly Concurrent Covert” (in short, wC-covert) security. The main difference
from the definition of C-covert is that the simulator receives additional advice to
simulate the view of environment. Namely, the simulator learns the index I(x)
(resp. I(y)) for an x (resp. y) input by an honest party A (resp. B). Intuitively,
simulation of a protocol can only be easier if the simulator gets such advice on
the honest party’s input, and therefore a protocol that satisfies this relaxation is
easier to achieve. (We will indeed see such construction in the Random Oracle
Model (ROM) in Section 4.) The reason that we consider such a relaxed notion
of C-covert security for a protocol computing an ISI functionality is that our
compiler, shown in Section 3, compiling C-covert protocol for an ISI function-
ality F to a C-covert protocol for an IMI functionality F̃ corresponding to F, is
constructed in the ideal cipher model where each party encrypts its messages
of an instance of the protocol for F such that if x is a party’s input to an in-
stance, then the party uses the ideal cipher Ψa(·) with key a = I(x) to encode all
messages belonging to the instance. The idea is that the simulator can embed a
random output r for the honest party’s ideal cipher queries. Only if the adversary
then queries Ψ−1a (r) will the simulator need to simulate the underlying message
m of the protocol for F, using the programmability of the ideal cipher and the
underlying simulator for F. Therefore, whenever the underlying simulator for F
is instantiated, a = I(x) is already known.

Definition 4 (wC-covert protocols for an ISI two-party functionality.).
Let F be an ISI two-party functionality and let Π = (A,B) be a two-party protocol
that realizes F. Let x be the input of honest party and let x∗ be the input of
corrupted party. Protocol Π is a ρ-round wC-covert implementation of F if Π
is C-covert computation of F with the following additional conditions:

1. (Additional Advice) For all efficient environments Z and adversaries A,
there exists an PPT simulator Sim s.t. for all inputs x in the domain of inputs
of F, the environment’s output in the real world, RealΠ,A,Z(k, z, r) is indistin-
guishable from the environment’s output in the ideal world, IdealF,Sim,Z(k, z, r),
where the way messages are passed between Z and honest ideal players is iden-
tical to the one of definition of concurrent covert computation in the Section

2.2 except for the following change in the ideal world: When Z sends to an
ideal honest party its input x to F, the security game gives an“advice” a to
Sim where a = I(x) if x 6= ⊥ and a = I(x∗) if x = ⊥.

2. Consider a malicious strategy for party A (resp. B), where A chooses s ←
{0, 1}t such that t is the bit length of the message sent by A in protocol Π and
sends s to (honest) B (resp. A) as its message in the j-th round of protocol
Π for some j ∈ [ρ]. Then, with probability 1− neg(k) over choice of s, Sim,
given the additional advice a as in Condition 1, queries the ideal functionality
F with ⊥ (and so the ideal party outputs ⊥). Furthermore, with probability
1−neg(k), over choice of s for A’s (resp. B’s) j-th round message as above,
Sim’s subsequent messages, conditioned on s, are uniformly distributed.

3 Compiling single-input TPCs to multi-input TPCs

In this section, we present a compiler Comp(Π,n) which takes any wC-covert
protocol Π for indexed single input two-party functionality F and converts it to a
C-covert protocol Π̃ which securely implements the corresponding indexed multi-
input two-party functionality F̃. We first describe the compiler which results in
a multi-input F̃ which takes exactly n inputs from each party, and then we show
how its efficiency can be improved if the resulting functionality F̃ is relaxed to
allow the dihonest parties to input n+ δ inputs instead of n.

We first give some intuition for our compiler and the proof of security. For
simple exposition in the following high-level intuition, we restrict ourselves to
the case of the two-message protocols where each party sends a single message to
each other (i.e., a single-round protocol). The formal construction of multi-round
compiler is provided in Fig. 1. The very high-level intuition is that each party
encodes n parallel messages (where n is the size of the party’s input set) from n
instantiations of the underlying protocol Π using an ideal cipher Ψ and a poly-
nomial encoding. Specifically, A constructs a polynomial PA1 such that for each
input xi of party A, PA1 (I(xi)) = ΨI(xi)(m

i
1) and sends PA1 (i.e., its coefficients)

to B as its message, where mi
1 is the corresponding first message of protocol

Π. Due to the covertness of the underlying protocol Π, the party receiving the
encoded message cannot tell which points of the polynomial were programmed.
For each of its inputs yi, party B recovers the value mi

1 = Ψ−1I(yi)(P
A
1 (I(yi)) and

uses it to compute the corresponding second message mi
2 of protocol Π. Then,

B encodes these messages in a similar fashion using polynomial PB2 . B sends
PB2 to A who similarly recovers its output values.

There are several important points about the proof of security:

– Using the simulator for Π. We note that the underlying simulator for
Π, denoted by SimΠ will be used to generate mi

1 when B is corrupt and mi
2

when A is corrupt. However, note that since the simulator Sim for the com-
piled protocol simulates the ideal cipher, Sim has the advantage that it can
construct the polynomials PA1 , PB2 at random and then run the underlying
simulator SimΠ to generate mi

1 or mi
2 only when an inversion query is made

to the ideal cipher. The advantage of this is that now SimΠ can be given
some auxiliary information about the ideal input I(xi) or I(yi). Specifically,
when an adversary queries Ψ−1a , the simulator for the compiled program
knows that the underyling message should be either a random message (cor-
responding to the element not being in the party’s set) or it should be a
protocol message for Π, computed using input xi or yi such that I(xi) = a
or I(yi) = a. Note that obtaining this auxiliary information is exactly the
relaxation on SimΠ is formalized in item (1) of Definition 4.

– Ensuring correctness. We must account for the fact that a party may not
query the ideal cipher but may simply embed a random message m in PA1
or PB2 with the hopes that it will be “valid”. Specifically, in the case that a
random message is embedded in PB2 , we must ensure correctness. In other
words, we must rule out the possibility that B embeds a random message,
from which SimΠ cannot extract a corresponding input yi but which yields
a valid output for the real party A. To address this issue, we assume that Π
has the property that random messages will cause the other party to output
⊥ with all but negligible probability. We note that this property of Π is
formalized in item (2) of Definition 4.

See Figure 1 for the formal description of the compiler Comp(Π,n).

Theorem 1. Let k be a security parameter. If Π is a wC-covert protocol for
indexed single input two-party functionality F and Ψ : {0, 1}∗ → {0, 1}l is an
ideal cipher with l = n · ω(k), then Comp(Π) is a secure, C-covert protocol for
indexed multi-input two-party functionality F̃ corresponding to F, taking n inputs
from each party.

Remark 1. We note that our compiler does not require the parties to enter
the same number of the inputs. An adversarial party’s number of inputs to
Comp(Π,n) might be indeed differ from n even if the honest party’s number of
inputs is n. First consider the case that the number of inputs of an adversary
is smaller than n. For this case, observe that the honest party given a degree-
n+ 1 polynomial as a message from its adversary will extract only the messages
m according to its own n indexes such that I(xi) = I(yi) while automatically
treating all the other messages as non-participating messages of adversary (even
though the honest party does not notice it). For the case where adversary wants
to enter inputs more than n encoded in a n+1-degree polynomial, we prove that
no PPT adversary can do that if we choose appropriate parameters for random
oracle. See the following Lemma 1.

Lemma 1. Let k be a security parameter, let q(k) be an arbitrary polynomial in
k, and let δ ≥ 1 be a constant. Let A be any PPT adversary which runs in time
q(k), an arbitrary polynomial in k. Consider the following game Gameq,m,n,k,δ
between adversary A and challenger C:

1. Repeat the following procedure q times:

(a) A chooses a field element a from a field F = GF (2m). A sends it to C.

Compiler(Π, n)

Setup: Given a security parameter k, two parties A and B can utilize the following:
– a ρ-round protocol Π = (AΠ , BΠ) for computing an indexed single-input

two-party functionality F over domain D, with an index function I : D → F
where F is a field of order 2k where AΠ and BΠ are message generators.

– an ideal cipher Ψ , and its inverse Ψ−1, keyed by elements of F , where for all
v ∈ F , Ψv(·) : {0, 1}l → {0, 1}l and Ψ−1

v (Ψv(x)) = x for all x ∈ {0, 1}l.
Inputs: The inputs of parties A and B are respectively vectors x = {x1, x2, · · · , xn}

and y = {y1, y2, · · · , yn} in Dn which are admitted by F, i.e. I(xi) 6= I(xj) and
I(yi) 6= I(yj) for all i 6= j.

Protocol Execution: WLOG, party A first sends a message to party B which then
responds back to A in each round.
To compute the messages, party A does the following:
For each j-th round such that j ∈ [ρ],
– For each i ∈ [n], do the following:
• Choose random coins riA,j .
• Compute the message αij of protocol Π on input xi, protocol Π transcripts
αi1, β

i
1, · · · , αii−1, β

i
i−1 and randomness riA,1, · · · , riA,j by using AΠ .

• Query the ideal cipher ΨI(xi)(·) to obtain siA,j = ΨI(xi)(α
i
j).

– Interpolate an n-degree polynomial PAj over F s.t. PAj (0) = 0 and PAj (I(xi)) =
siA,j for i ∈ [n].

– Send PAj to B (i.e. a vector of coefficients of PAj or a vector of values of PAj on
n fixed points).

To compute the messages (responses to A), party B does the following:
For each j-th round such that j ∈ [ρ],
– For each i ∈ [n], do the following:
• Compute αij = Ψ−1

I(yi)
(PAj (I(yi))).

• Choose random coins riB,j .
• Compute the message βij of protocol Π on input yi, protocol Π transcripts
αi1, β

i
1, · · · , αii−1, β

i
i−1, αii, randomness riB,1, · · · , riB,j by using BΠ .

• Query the ideal cipher ΨI(yi)(·) to obtain siB,j = ΨI(yi)(β
i
j).

– Interpolate an n-degree polynomial PBj over F s.t. PBj (0) = 0 and PBj (I(yi)) =
siB,j for i ∈ [n].

– Send PBj to A.
Output:

– For each i ∈ [n], A does the following:
• Compute αiρ = Ψ−1

I(xi)
(PBρ (I(xi))).

• Choose random coins riρ+1.

• Compute the i-th output outI(x
i) of protocol Π on input xi, randomness

ri1, · · · , riρ+1, and protocol Π transcript αi1, β
i
1, · · · , αiρ, βiρ by using AΠ .

– Let S be the set of i’s in [n] such that outI(x
i) 6= ⊥.

– Output Sout = {(I(xi), outI(x
i)) | for i ∈ S} if S 6= ∅ and ⊥ otherwise.

– B does the same as A by using BΠ on its own input and random coins.

Fig. 1. The compiler Comp(Π,n).

(b) C responses with s uniformly sampled from field F .
2. Without loss of generality, assume that A chooses q distinct a’s. Let T be the

set of q pairs of (a, s) generated in the above procedure. A wins the game if
there exists a degree n polynomial f(x) such that there exist a subset S ⊂ T
where |S| = n+ δ and f(a) = s for all (a, s) in S.

Then, for sufficiently large k, for all n and δ, if m = nω(log k), then for any
PPT adversary A running in time q, A wins the above game except with negligible
probability ε.

Proof. Towards contradiction, assume that the lemma is false. That is, there
exists a PPT adversary A that runs in time q = kd for some constant d and wins
the game with non-negligible probability: there exists some c such that

P := Pr[A wins Gameq,m,n,k,δ] ≥ 1
kc

where the probability is taken over the coin toss of adversary A.
Then, we have

P =

(
q

n+ δ

)
1

|F |δ
=

(
q

n+ δ

)
1

2mδ
≤ qn+δ

2mδ
.

This means that

1

kc
≤ qn+δ

2mδ
⇒ 2mδ

qn+δ
≤ kc ⇒ mδ − (n+ δ) log qn+δ ≤ c log k

⇒ mδ

log k
− dn− dδ ≤ c⇒ ω(log k)nδ

log k
− dn− dδ ≤ c⇒ n(ω(1)) ≤ c.

Therefore, this completes the proof as we have a contradiction. ut

We provide the formal proof of Theorem 1 in the full version of this work
due to the restriction of the space. One immediate consequence of Theorem 1 is
that it compiles a wC-covert protocols for any ISI two-party functionality into a
C-covert protocol for the same functionality in the ideal cipher model. That is, if
we encode messages with a degree one polynomial (a linear function) vanishing
at 0 where messages correspond to underlying weakly secure protocol Π for F,
then the resulting compiled protocol Comp(Π) is a C-covert protocol for F.

Corollary 1. If there is a wC-covert protocol for an ISI two-party functionality
F then there is a C-covert protocol for F in the random oracle model.

Improving efficiency by relaxing the functionality. We note that Theorem 1 and
its security proof rely on the fact that ideal cipher Ψ maps protocol messages into
a string of length m = n · ω(k), so the efficiency of protocol degrades linearly in
n. To improve the compilation efficiency we can break this dependency between
m and n by allowing (corrupted) parties to encode more than n messages into
a polynomial. In particular, we relaxed the requirement of compiler that each
party must put n inputs by allowing the parties to put n + δ inputs for δ ≥ 0.

That is, if we allow δ = O(n) in the proof of Lemma 1 above, then it is easy
to see m = O(k), which is independent of the number of expected inputs. The
simulator’s strategy (provided in the full version) remains the same except that
the simulator’s time complexity increases by O(n).

Theorem 2. Let k be a security parameter and let δ = O(n). If Π is a wC-covert
protocol for indexed single input two-party functionality F and Ψ : {0, 1}∗ →
{0, 1}l is an ideal cipher with l = O(k), then Comp(Π) is a secure, C-covert
protocol for δ-relaxed indexed multi-input two-party functionality F̃ corresponding
to F, taking at most n+ δ inputs from each party.

4 Instantiation of wC-covert string equality protocol

In the following, we construct an efficient one-round C-covert set-intersection
protocol in the random oracle model. Given the compiler presented in Section 3,
the construction of wC-covert protocol for ISI two-party string equality protocol
is sufficient for a C-covert set-intersection protocol.

At the very high-level, the main idea behind our construction is to utilize
the Smooth Projective Hash Function (SPHF) for (Cramer-Shoup like, see [3]
for more details) CCA-secure encryption defined in the Random Oracle Model.
More specifically, let G be a cyclic group of prime q and H be a random oracle.
Given a public key (g, h) where h = gα for some α ∈ Zq, a party (called A)
can encrypt its message p as c = (gr, hr · gH(p)) for some random r ∈ Zq. Given
the ciphertext c, another party (called B), if B possesses p, can extract a DDH
tuple from the ciphertext c and create a hash value h and a projection key pk
which is independent of message p. If A is given the projection key pk, then it
may compute the same hash value h using its own witness r and pk. If B does
not possess p, then B cannot extract a DDH tuple from the encryption and the
hash value h becomes uniformly random in its range in the view of A even given
projection key pk. For our wC-covert string equality protocol, we use this SPHF
in both ways: from A to B and from B to A, where each direction checks if
a party possess an identical string. The formal description of wC-covert string
equality protocol is provided in Fig. 2.

Theorem 3. Assume the DDH problem is hard in group G of order prime q and
let H be a random oracle. Then, protocol Π is a one-round wC-covert protocol
for the string-equality functionality.

We prove Theorem 3 by proving two lemmas, Lemma 2 (correctness) and
Lemma 3 (security). Due to the space constrain, we provide their proofs in the
full version.

Lemma 2. The protocol Π described in Fig. 2 is correct with overwhelming
probability. That is, Π on input (pA, pB) outputs (1,⊥) if and only if pA = pB
except with probability 1/2q.

Lemma 3. The protocol Π described in Fig. 2 is one-round wC-covert protocol
as defined in Definition 4.

Covert Protocol Π = 〈A,B〉

Setup: A cyclic group G of prime order q, generator g, h = gα for random α in
Zq. CRS = (G, q, g, h) is published. Let H be a Random Oracle with outputs in
Zq. Random elements of G must be efficiently encodeable as random bitstrings of
fixed length. (This is easy e.g. if G is a subgroup of residues mod p for p−1 = q ·c
s.t. gcd(q, c) = 1.)

Inputs: A has input pA, B has input pB .
Outputs: A outputs 1 if inputs pA and pB are equal. Otherwise, A outputs 0. B

always outputs ⊥. Inputs are favorable if pA = pB .
First Round:

– On input pA, A does the following:
1. Choose eA, dA, rA ← Zq.
2. Set pkA := geAhdA , c1A := grA , and c2A := hrA · gH(pA).
3. Send (c1A, c

2
A, pkA) to B.

Second Round:
– B does the following:

1. Choose eB , dB , rB ← Zq.
2. Set pkB := geBhdB , c1B := grB , and c2B := hrB · gH(pB)).
3. Compute kB1 := H((c1A)eB · (c2A/gH(pB))dB), kB2 := H((pkA)rB).

Send (c1B , c
2
B , pkB , kB = kB1 ⊕ kB2) to A.

Output:
– A computes kA1 := H((pkB)rA) and kA2 := H((c1B)eA · (c2B/gH(pA))dA).
– A outputs 1 if kA1 ⊕ kA2 = kB , and 0 otherwise.

Fig. 2. A simple covert protocol Π for string equality functionality

Combining Theorem 1 (resp. Theorem 2) with Theorem 3 immediately yields
two-pass C-covert set-intersection protocol (resp. with δ-relaxation). For the com-
pleteness, we provide the formal corollary as follows.

Corollary 2. Let k be a security parameter and let δ = 0 (resp. δ = O(n)).
If Π is a wC-covert protocol for indexed single input two-party string equality
functionality F and Ψ : {0, 1}∗ → {0, 1}l is an ideal cipher with l = O(nω(log k))
(resp. l = O(k)), then Comp(Π,n) is a one-round C-covert protocol for (resp. δ-)
relaxed set-intersection two-party functionality, taking a set of n (resp. at most
n+ δ) elements from each party.

References

1. D. Balfanz, G. Durfee, N. Shankar, D.K. Smetters, J. Staddon, and H.C. Wong.
Secret handshakes from pairing-based key agreements. In IEEE Symposium on
Security and Privacy, 2003.

2. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, CCS ’93, pages 62–73, New York, NY,
USA, 1993. ACM.

3. Fabrice Benhamouda, Olivier Blazy, Cline Chevalier, David Pointcheval, and
Damien Vergnaud. New techniques for sphfs and efficient one-round pake pro-
tocols. In In CRYPTO 13, pages 449–475. Springer-Verlag, 2013.

4. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings of the 42Nd IEEE Symposium on Foundations of Com-
puter Science, FOCS ’01, pages 136–, Washington, DC, USA, 2001. IEEE Com-
puter Society.

5. Nishanth Chandran, Vipul Goyal, Rafail Ostrovsky, and Amit Sahai. Covert multi-
party computation. In FOCS, pages 238–248, 2007.

6. Jean-Sébastien Coron, Jacques Patarin, and Yannick Seurin. The random oracle
model and the ideal cipher model are equivalent. In Advances in Cryptology -
CRYPTO 2008, 28th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 17-21, 2008. Proceedings, pages 1–20, 2008.

7. C. Dong, L. Chen, and Z. Wen. When private set intersection meets big data: An
efficient and scalable protocol. In Computer and Communications Security (CCS),
page 789800, 2013.

8. Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas. Efficient
set intersection with simulation-based security. Journal of Cryptology, pages 1–41,
2014.

9. Vipul Goyal and Abhishek Jain. On the round complexity of covert computation.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing,
STOC ’10, pages 191–200, New York, NY, USA, 2010. ACM.

10. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence of the
random oracle model and the ideal cipher model, revisited. In Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6-8 June 2011, pages 89–98, 2011.

11. Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits bet-
ter than custom protocols? In Network and Distributed System Security (NDSS),
2012.

12. Stanislaw Jarecki. Practical covert authentication. In Hugo Krawczyk, editor,
Public-Key Cryptography PKC 2014, volume 8383 of Lecture Notes in Computer
Science, pages 611–629. Springer Berlin Heidelberg, 2014.

13. Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In
Security and Cryptography for Networks, 7th International Conference, SCN 2010,
Amalfi, Italy, September 13-15, 2010. Proceedings, pages 418–435, 2010.

14. Mark Manulis, Benny Pinkas, and Bertram Poettering. Privacy-preserving group
discovery with linear complexity. In Proceedings of the 8th International Conference
on Applied Cryptography and Network Security, ACNS’10, pages 420–437, Berlin,
Heidelberg, 2010. Springer-Verlag.

15. Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersec-
tion based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA, August 20-22,
2014., pages 797–812. USENIX Association, 2014.

16. Luis von Ahn, Nicholas Hopper, and John Langford. Covert two-party computa-
tion. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of
Computing, STOC ’05, pages 513–522, New York, NY, USA, 2005. ACM.

