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Abstract—With the structure of deep neural networks (DNN) being
of increasing commercial value, DNN reverse engineering attacks have
become a great security concern. It has been shown that the memory
access pattern of a processor running DNNs can be exploited to decipher
their detailed structure [1]. In this work, we propose a defensive memory
access mechanism which utilizes oblivious shuffle, address space layout
randomization, and dummy memory accesses to counter such attacks.
Experiments show that our defense exponentially increases the attack
complexity with asymptotically lower memory access overhead compared
to generic memory obfuscation techniques such as ORAM and is scalable
to larger DNNs.

I. INTRODUCTION

Recent years have seen an unprecedented development of artificial
intelligence in which deep neural networks (DNN) have been a major
driving force. Due to the difficulty of training high performance
DNNs, the structure and weights of the DNN are a crucial intellectual
property of modern machine learning based systems. The owner of
the DNN model only wishes to provide I/O access to users without
divulging the inner details. Unfortunately, even if the DNN structure
is not explicitly given to the user, reverse-engineering attacks can
be used to reconstruct it. In particular, it has been shown that
the DNN structure can be easily reverse-engineered if the memory
access pattern of the processor running the DNN is leaked [1].
This is a significant security concern. To the best of the authors’
knowledge, no efficient countermeasure has been proposed. Although
applying an oblivious RAM (ORAM) protocol is a well-established
approach to hide the memory access pattern, it comes with very
high memory access overheads [2]–[4]. Because running DNNs is
a memory intensive task, the speed of the DNN running in hardware
is mostly constrained by the number of memory accesses [5]–[7].
This makes ORAM-based memory access obfuscation impractical for
DNNs.

Oblivious shuffle also provably obfuscates the address space with
lower overhead than ORAM albeit with weaker theoretical guarantees
[8] (detailed in Section III). In this work, we utilize oblivious shuffle
to obfuscate a subset of the memory access patterns. The subset itself
is customizable by the designer. A bigger subset (which could at most
include the entire memory space) results in stronger obfuscation at
the cost of higher memory access overheads. In addition, we use
address space layout randomization (ASLR) on the entire memory
space and add dummy memory access (DumMA) requests to the
shuffled addresses for further improvements in security guarantees.

The contribution of this work is as follows:

• A novel defense strategy to obfuscate the processor’s memory
access pattern is proposed in order to reduce information leakage
about the structure of the DNN being executed. This strategy
utilizes three techniques: oblivious shuffle, address space layout
randomization (ASLR), and dummy memory access (DumMA).
Although these techniques have been existing, our innovation
lies in combining them strategically to thwart the attack with
low overhead.

• A modified attack based on that in [1] is formulated to reverse-
engineer the DNN structure in the presence of our defense in
order to evaluate the security of our defense.

• Experimental results show that the complexity of the modified
attack is very high thereby demonstrating the effectiveness of
our defense.

• It is also shown that the memory access overhead of our defense
is very low and does not increase with the DNN depth, making
our approach scalable to deeper models.

II. DNN REVERSE-ENGINEERING

The recent work of Hua, Zhang, and Suh [1] illustrates an elegant
optimization theoretic attack based on the memory access side-
channels of systems running DNNs. The attack model considered
is as follows. The owner of the DNN model wants to enable the
user to run the model on her own processor (e.g. a CPU, GPU, or
DNN accelerator) without exposing the structure of the DNN model.
The attacker is considered to be the user who is honest-but-curious:
she wants to know the details of the model but does not interfere
with the normal execution of the DNN model. The processor is
considered as secure, i. e. the attacker cannot observe or interfere
with the processor’s internal operations.

However, the attacker is able to observe the memory access
patterns of the processor, i. e. a transcript of its memory accesses
including the accessed addresses, the access types (i. e. read or write),
and the time of each access. The attacker also knows the input and
output of the DNN (since she has I/O access to the DNN). As shown
in [1], a reverse-engineering attack can be formulated under this
attack model and the architecture of a DNN can be extracted.

A. Attack Setup

The specific type of deep neural networks (DNN) of interest to us is
convolution neural networks. They have found significant applications
in several machine learning problems dealing with classification.
These networks comprise two types of layers: convolutional (Conv)
layers and fully connected (FC) layers. 1 Each layer transforms a set
of input neurons, called the input feature map (IFM), into a set of
output neurons, called the output feature map (OFM). The OFM
of the previous layer is the IFM of the next layer. Figure 1 illustrates
the structure of a Conv layer. The structure of a Conv layer can be
described by a set of hyper-parameters which are listed in Table I.
The structure of a fully connected layer is much simpler. If layer i
is an FC layer, its IFM and OFM are vectors of length zini and zouti ,
respectively. A 2-D weight matrix of dimension zfi = zini × zouti

transforms the IFM to the OFM.

1Pooling layers are considered as a part of the Conv layers as opposed
to separate layers since the processor writes the OFM to the memory after
pooling (if the pooling layer exists) and the feature map sizes before pooling
are not observable to the attacker. Activation functions are not considered in
this work since they only modify the value of neurons not the structure of the
DNN.
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Fig. 1. Illustration of a Conv layer. “*” indicates the inner product, each of
which computes an output neuron.

Parameter Definition

win
i , wout

i width of the IFM/OFM of layer i
din
i , dout

i depth of IFM/OFM of layer i
zin
i , zout

i , zf
i size of IFM/OFM/filter of layer i

Pi indicator of whether pooling exists in layer i
fconv
i , fpool

i filter width of convolution/pooling (if existing) of layer i
sconv
i , spooli stride of convolution/pooling (if existing) of layer i

pconv
i , ppool

i padding of convolution/pooling (if existing) of layer i

TABLE I
LIST OF HYPER-PARAMETERS OF EACH LAYER

As in the attack model of [1], the DNN model is stored in a virtual
address space that starts from 1 and each neuron or weight takes
exactly 1 address to store. The way that the neurons and weights are
aligned in the memory is as follows: The first feature map (i. e. the
IFM of layer 0, of size zin0 ) starts from address 1 and ends at zin0 .
The second feature map (the OFM of layer 0 and the IFM of layer
1, of size zout0 which equals zin1 ) starts at zin0 + 1, and so on. The
weights are stored in a separate area of memory and organized in a
layer-by-layer configuration (similar to the neurons).

B. Attack Methodology

The attack to reverse-engineer the structure of a DNN consists of
3 phases: determining the layer boundaries in the memory traces,
solving for the feasible DNN structures which fit the memory trace,
and training each feasible structure for the best match.

1) Phase 1: In this phase, the attacker determines the layer
boundaries in the memory access transcript leaked by side-channels
and obtains the IFM, OFM, and filter sizes of each layer. This process
is illustrated in Figure 2.

The layer boundaries are expressed in terms of the clock cycles at
which the first memory access of each layer occurs. Let ci, i ∈ [L]
be the first clock cycle of layer i where L is the number of layers.
The attacker determines the boundaries between layers by observing
the first occurrence of read-after-write (RAW) in the memory. This
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Fig. 2. Illustration of the attack in [1] per Section II-B.

Benchmark input # layers attack complexity metrics
win

0 din0 Conv FC Total # IFPs solved # feasible structures
DNN 1 28 1 2 2 4 4 4
DNN 2 32 1 3 2 5 5 6
DNN 3 32 3 4 3 7 8 1
DNN 4 64 3 5 3 8 9 8

TABLE II
BENCHMARK DNNS AND ATTACK COMPLEXITY USING THE ATTACK IN [1]

is illustrated in Figure 2(a). Layer 0 writes its OFM to the memory
and layer 1 needs to read the same memory location to get it as its
IFM. Therefore, the first occurrence of RAW indicates that layer 0 has
finished and layer 1 has started, thereby leaking c1 (Figure 2(b)). In
this way, by counting how many addresses have been written to before
c1, the attacker observes the OFM size of layer 0 zout0 (Figure 2(b)).
Similarly, the attacker can also observe the filter size of layer 0 zf0 .
The first RAW of layer 1’s OFM marks the beginning of layer 2
(Figure 2(c)). By repeating the above procedure for all the subsequent
layers, the IFM sizes, OFM sizes, filter sizes, the starting clock cycles
of all the following layers can be observed.

2) Phase 2: After obtaining feature map and filter sizes in the
previous phase, the attacker tries to obtain all the feasible structures
of the DNN that conform with the observed access pattern. Each
structure is described by a combination of the hyper-parameters
of every layer (as listed in Table I). These hyper-parameters are
obtained by solving an integer feasibility program (IFP) problem
that captures the relationship among the hyper-parameters for each
layer with the information obtained from phase 1. The IFP is defined
by the following equations:

zini = (win
i )2 × dini , zouti = (wout

i )2 × douti (1)

zf = (fconv
i )2 × dini × douti (2)

wout
i =

win
i −fconv

i +pconv
i

sconv
i

+ 1 + P (ppooli − fpool
i )

spooli × P + P̄
(3)

sconv
i ≤ fconv

i ≤ win
i

2
(4)

spooli ≤ fpool
i ≤ win

i − fconv
i + pconv

i

sconv
i

+ 1 (5)

pconv
i < fconv

i , ppooli < fpool
i (6)

3) Phase 3: After all the possible structures are obtained, the
attacker trains each structure and picks the one with the highest
accuracy as the final outcome. It was shown in [1] that the feasible
structures obtained from the memory traffic were very few thereby
significantly reducing the training effort.

C. Attack Complexity and Practicality

In this work, we consider 4 DNN benchmarks which are listed in
Table II. The complexity of the attack is measured using two metrics:
the number of IFP problems solved and the total number of feasible
DNN structures. The former represents the hardness involved with
obtaining the set of feasible DNN structures (essentially the complex-
ity of Phase 2). The latter represents the amount of training effort
needed by the attacker to pick the best model (essentially Phase 3).

We wrote a simulator to generate a processor’s memory trace.
The processor’s memory trace is reverse-engineered using the above-
described attack method. The complexity of the attacks on the
benchmark DNNs is also shown in Table II. As seen, both metrics
are low for all the benchmarks, indicating the low complexity of the
attack.

It is important to note that the “exact” neural network with exactly
the same weights and topology may not be the one synthesized by



this attack. However, the attacker’s objective would still be achieved
since she would still be able to get substantially accurate classification
performed by synthesizing the model based on the one running on
the processor.

III. CRYPTOGRAPHIC PRELIMINARIES

The effectiveness of the above-mentioned attack necessitates a
defense mechanism that reduces the information leakage of the DNN
structure in the memory access patterns. Hiding memory access
patterns is a well-studied problem and has been formalized via the
notion of Oblivious RAM (ORAM) schemes. An ORAM scheme
can be used to obfuscate the memory access patterns of any input
RAM program and provides the strong theoretical guarantee that
the obfuscated memory access patterns reveal no information about
the input program [9]. However, even the state-of-the-art ORAM
protocol [2]–[4] incurs an access overhead of Ω(logN), i. e. the
average number of memory accesses that have to be performed in
order to access a single address in the original program is at least
logN , where N is the total number of address.

In our work, instead of ORAMs, we consider a different approach
called oblivious shuffle whose overhead is much lower [10]. We
define oblivious shuffle below followed by an explanatory example.

Definition 3.1 (Oblivious Shuffle): A shuffle algorithm is an algo-
rithm of the form (Enc(π(A)), α) ← Shuffle(A,Enc, π) where A
is an input array, Enc is a secure encryption algorithm, and π is a
random, predetermined permutation function. The output of Shuffle is
an encryption of the permutation of A according to π and a memory
access transcript α. The Shuffle algorithm is an oblivious shuffle if
α is independent of π.
π gets obfuscated by an oblivious shuffle. An example of oblivious

shuffle algorithm is as follows. Let A be an array of length N , π be a
permutation function over [N ], π−1 be the inverse function of π, and
Enc be a secure encryption algorithm. We assume for simplicity that
the index of an element in A is equal to its address in the memory.
A simple oblivious shuffle algorithm is as follows:

for i in [N ] do
Read address i for A[i] and store A[i] in the secure on-chip

memory of the processor
end for
for i in [N ] do

Write Enc(A[π−1(i)]) to address i
end for

Using the above algorithm, the attacker will always see the same
memory access pattern regardless of π, which, in this case, is a read
sequence followed by a write sequence, both in the address order of
0, 1, . . . , N−1. Hence the attacker cannot decipher π. Reference [8]
proposed the state-of-the-art oblivious shuffle algorithm, called the
Melbourne shuffle, which is efficient and scalable: it only requires
O(
√
N) private memory (i. e. the memory not observable to the

attacker) to shuffle an array of size O(N) as proven in Theorem
5.1 in [8].

In this work, the permutation function π we choose ‘looks’ random
and utilizes the internal randomness of the processor (which is fixed
for the same shuffle but can vary for different shuffles). Similar to
the above example, the attacker will also see a fixed memory access
pattern α of Melbourne shuffle no matter what π is.

Under this condition, if a processor is running a DNN model and
switches between Melbourne shuffle phases and regular DNN phases,
there will be three types of phases in the memory access pattern:
(i) the Melbourne shuffle, (ii) the DNN accesses inside the shuffled
addresses, and (iii) the DNN access outside the shuffled addresses.
The attacker can distinguish these phases because, no matter what

memory access pattern is generated by the DNN application, that
of the Melbourne shuffle will always be α. The attacker can hence
also observe the addresses that are shuffled. Note, however, that the
attacker has no information about π, or the actual memory addresses
accessed by the DNN application during type (ii) phases since she
does not know the internal randomness of the processor, nor does α
leak any information of π.

Running DNNs is a memory-intensive task where every neuron and
weight needs to be accessed. To compare the memory access overhead
of ORAM and that of the Melbourne shuffle, we take an array A of
length N and require that every element in A be accessed once. With
ORAM, the total # accesses will be Ω(N logN). With Melbourne
shuffle, the memory accesses consists of two parts: those of the shuffle
and those of the actual accesses. The Melbourne shuffle takes O(N)
memory accesses. Unlike the ORAM, once the oblivious shuffle is
completed, there is no additional access overhead: one simply needs
to access the new address. Hence the total # accesses will be O(N)+
N = O(N). The overhead of the Melbourne shuffle is therefore a
constant multiplicative factor, making it asymptotically lower than
that of the ORAM.

IV. DEFENSE METHODOLOGY

In this section, we propose a memory access strategy for processors
to run DNN models with minimal leakage of structural information.
The defense should fulfill two competing objectives:

• The resulting attack complexity should be very high.
• The memory access overhead should be low.

As discussed in Sec. III, using ORAM will satisfy the first objective
but fail the second one. In order to achieve both objectives, our
proposed defense strategy utilizes 1) the Melbourne shuffle , 2)
address space layout randomization (ASLR) [11], and 3) adding
dummy memory accesses (DumMA). A modified attack based on [1]
to find the feasible structures of the DNN is also formulated in order
to evaluate the security of our defense.

A. Utilizing Oblivious Shuffle

In order to obfuscate all the layer boundaries, a DNN with L
layers needs L− 1 oblivious shuffles (one for each layer boundary)
during its execution. Note that we do not need to shuffle the entire
memory: in the i-th shuffle, only the memory addresses accessed near
ci need to be shuffled (recall that ci is the clock cycle at the beginning
of layer i). Varying the number of shuffled addresses enables us to
explore a spectrum of trade-offs between the memory access overhead
and the security of the defense. In this subsection, we present how
to determine when and where to shuffle and model the attacker’s
knowledge based on the new memory access pattern.

1) Oblivious Shuffle Strategy: We use the following method to
determine where and when to shuffle. For the reasons described in
Section III, we assume a strong attacker who can distinguish whether
an access is a regular DNN-based request vs. a Melbourne shuffle
request. Note that this assumption only strengthens the attacker and
therefore designs in this threat model yield more secure strategies. In
our explanation below, we express the timescale in terms of the clock
cycles in the original memory access pattern (such as in Figure 2)
and ignore the clock cycles that are spent on Melbourne shuffle as
if it is done instantly. In the rest of this paper, all the mentions of
“memory accesses” are referred to those of the DNN model, NOT
those of Melbourne shuffle.

Step 1: determining the shuffle budget. In order to control the
memory access overhead of the Melbourne shuffle, we shuffle at most
2bs addresses in each shuffle. bs is called the shuffle budget.

Step 2: when to shuffle. In order to obfuscate ci, all the memory
addresses that are accessed within a certain range of clock cycles
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Fig. 3. Illustration of oblivious shuffle in the memory access pattern of a
DNN. The variables that are observable to the attacker are also illustrated.

containing ci are obfuscated using Melbourne shuffle. To this end,
we determine the above-mentioned clock cycle range with an upper
bound and a lower bound of ci, denoted as cli and cui , respectively.
We take ĉli ∼ U(ci − 2bs , ci) and cli = dĉlie where U stands for the
uniform distribution (assuming there is at most one memory access
per clock cycle). Let cui = bcli + 2bsc. This makes sure that the total
# memory address accessed from cli to cui does not exceed 2bs .

All the memory addresses that are accessed within [cli, c
u
i ] are to

be shuffled. We illustrate this in Figure 3 to which we encourage
the readers to refer as the explanation proceeds. We call the set of
shuffled memory addresses at cli the shuffled regime i, which include
sini input neurons addresses, souti output neurons addresses, swt

i

weight addresses, and a set of additional addresses.These additional
addresses are randomly chosen and can be any address in the memory
space allocated for the DNN, as shown in Figure 3. This padding
action will also enable us to add dummy accesses in the shuffled
regimes to improve security as will be shown later.

Step 3: choosing the permutation π. Although the Melbourne
shuffle will not leak information about π, π should ‘look’ random
enough in order to obfuscate the memory accesses within the shuffled
regimes. In addition, π must be easy to compute, otherwise we would
spend too much time computing π. To meet these requirements, we
use the Feistel-based format-preserving encryption [12] algorithm for
π.

2) Information Leakage: We model the attacker’s best-case knowl-
edge in order to analyze the worst-case security guarantees. As noted
before, we assume a strong attacker who can tell the difference
between a Melbourne shuffle access and a regular DNN access.
Therefore, cli and the addresses within the shuffled regime i are
known to the attacker. She can also infer cui since after cui , the
memory accesses of the DNN will come out of the shuffled regime.
As described in Section II, by default, the neurons are stored in
consecutive addresses and the weights too. In line with the best-for-
the-attacker principle, we assume that each kind of memory access
(i. e. neuron read, neuron write, or weight read) within each shuffled
regime is of consecutive addresses. In this case, by calculating the
difference of accessed addresses before cli and after cui , the attacker
is able to infer sini , souti , and swt

i .
The memory access pattern outside the shuffled regimes are di-

rectly visible to the attacker. Let nin
i , nwt

i , and nout
i denote the # read

neurons, # read weights, and # written neurons, respectively, between
clock cycle cui + 1 and cli+1 − 1 (essentially the region between two
adjacent shuffled regimes, note that in this region layer i is active) as
illustrated in Figure 3. Let ŝini and ŝwt

i be the # shuffled input neurons
and weights in the shuffled regime i, respectively, that are accessed
before ci (i. e. belong to layer i − 1). In order to find all feasible
structures of layer i, the attacker needs to enumerate all the possible

(integer) combinations of ci ∈ [cli, c
u
i ] and ci+1 ∈ [cli+1, c

u
i+1]

(since she does not know exactly where the ci, ci+1 lie within these
boundaries). Let rt2t1 and wt2

t1
be the # read and written addresses,

respectively, within [t1, t2]. The following equations hold:

r
ci+1
ci = zini + zfi (7)

w
ci+1
ci = zouti (8)

ŝini+1 = zini − nin
i + (sini − ŝini ) ≥ 0 (9)

ŝwt
i+1 = zfi − n

wt
i + (swt

i − ŝwt
i ) ≥ 0 (10)

Equation (7) states that the total # read addresses between the layer
boundaries is equal to the summation of the IFM size and the filter
size. Similarly, (8) is based on the fact that the OFM is the only
thing that is written back to the memory. Equations (9) and (10) are
because the read accesses of each layer consist of 3 parts: (a) those
in the previous shuffled regime (i), (b) those that are not shuffled,
and (c) those in the current shuffled regime (i+ 1), and those in (c)
must be non-negative.

Equations (7) through (10) gives the possible combinations of zouti

and zfi . Each possible combination is plugged in the IFP problem in
Equations (1) through (6). The more possible combinations of zouti

and zfi , the more IFPs to be solved and hence the greater attack
complexity. In order to increase the # possible combinations and
hence attack complexity, we propose to use ASLR and DumMA
to relax the constraints on zouti and zfi imposed by Equations (7)
through (10).

B. Address Space Layout Randomization

ASLR was initially proposed to counter the buffer overflow at-
tack [11]. In our work, ASLR is only done once at compile time to
randomize the entire memory space. Each address is permuted using a
permutation function πinit which maps an address addr to be initially
stored in address πinit(addr). We use the same type of algorithm for
πinit as the π for the Melbourne shuffle. In this way, the access
pattern even outside the shuffled regimes will look random and the
continuity of the address space is broken. Therefore, the attacker is
not able to infer nin

i , nout
i , or nwt

i . As a result, Equations (9) and (10),
which require these variables, are not applicable any more. In this
way, the constraints on zouti and zfi are reduced to only Equations (7)
and (8). This will result in more possible combinations of zouti and
zfi and hence force the attack to solve more IFPs. Note that ASLR
does not increase the number of memory accesses at run time since
it works only as a mapping from the requested address to the actual
address. Also note that ASLR just by itself does not mitigate the
RAW type attack and needs to be combined with oblivious shuffle.

C. Dummy Memory Accesses

In this technique, we add dummy memory access within the
shuffled regimes. When dummy memory accesses (DumMA) exist
in the shuffled regimes, the attacker cannot tell a real access from
a dummy one. However, she still gets an upper bound of # real
read/write addresses since they must not exceed the total # read/write
addresses (i. e. real+dummy). One question is how many dummy
accesses should be added. This is answered as follows. Since repeated
accesses to the same address of the same type are observable, these
accesses will not increase the upper bound of # real read/write
addresses and do not improve the level of obfuscation. Therefore,
there is no need to add more dummy accesses when every address
in the shuffled regime is both read and written once.



Techniques
Availability to the attacker

Equationssini , sout
i , swt

i , nin
i , nout

i , nwt
i r

ci
ci−1

, w
ci
ci−1

OS Yes Exact (7) ∼ (10)
OS + ASLR No Exact (7), (8)

OS + DumMA Yes Upper bound (9) ∼ (12)
All the above No Upper bound (11), (12)

TABLE III
THE INFORMATION LEAKED TO THE ATTACKER UNDER VARIOUS

COMBINATIONS OF DEFENSE TECHNIQUES

1) DumMA Without ASLR: In this case, the attacker is able to
infer each type of shuffled addresses: sini , souti , and swt

i because
they only rely on cli, c

u
i . For this reason, Equations (9) and (10) still

hold. However, Equations (7) and (8) need to be changed to reflect the
“upper bound” effect caused by DumMA: the # of reads and writes
between the layer boundaries are the upper bounds of zini + zfi and
zouti , respectively (since many of these accesses are dummies).

r
ci+1
ci ≥ zini + zfi (11)

w
ci+1
ci ≥ zouti (12)

Compared to Equations (7) and (8), (11) and (12) change equalities
to inequalities (with the equal sign), and thus increasing the possible
combinations of zouti and zfi .

2) DumMA With ASLR: Due to ASLR, Equations (9) or (10) does
not hold any more for the same reason as described in Sec. IV-B.
zouti and zfi are hence only constrained by Equations (11) and (12).

D. Summary of Defense Techniques

Three techniques have been introduced in the formulation of our
defense: oblivious shuffle (OS), address space layout randomization
(ASLR), and dummy memory accesses (DumMA). Each OS ob-
fuscates the accessed memory addresses within a certain range of
clock cycles containing a layer boundary. The following information
remains leaked to the attacker: (i) the nature of each memory access
outside the shuffled regimes, (ii) the # shuffled input neurons sini ,
output neurons souti , and weights swt

i in each shuffled regime, and
(iii) the (actual) # read and written addresses of the DNN model.
(i) and (ii) are obfuscated by ASLR and (iii) by DumMA. The
information leakage under four cases is summarized in Table III:
OS only, OS + ASLR, OS + DumMA, and OS + ASLR + DumMA.

E. Attacking the Proposed Defense

As mentioned earlier, we assume that the attacker knows which
defense techniques are in place and is able to attack accordingly.
The new attack of layer i is shown using the following pseudo-code:

for (ci, ci+1) ∈ [cli, c
u
i ]× [cli+1, c

u
i+1] do

for Each feasible structure of layer i− 1 ending at ci − 1 do
Find all the possible combinations of zo and zf according

to the equations summarized in Table III.
for Each possible (zo, zf ) pair do

Solve the IFP defined by Equations (1) through (6).
Concatenate all the found feasible structures of layer i to the
currently used structure of layer i− 1.
When the above algorithm finishes for the last layer, all the feasible

structures of the DNN will be obtained.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the effectiveness of our proposed
defense strategy using the complexity of the modified attack and
measure the memory access overhead. The attack complexity is
evaluated in the same way as described in Section II-C, with the two
metrics being the number of IFP problems (defined by Equations (1)
∼ (6)) (Phase 2) to be solved and the total number of feasible DNN
structures that need to be trained and evaluated (Phase 3).

Benchmark bs = 6 bs = 7 bs = 8 bs = 9

DNN 1 Without DumMA 4.10% 10.89% 10.94% 33.63%
With DumMA 4.36% 11.35% 12.07% 35.21%

DNN 2 Without DumMA 8.85% 25.20% 36.24% 86.66%
With DumMA 9.31% 26.44% 37.95% 87.58%

DNN 3 Without DumMA 2.38% 3.72% 9.03% 16.42%
With DumMA 2.49% 3.99% 9.41% 17.16%

DNN 4 Without DumMA 1.12% 1.83% 5.18% 13.97%
With DumMA 1.76% 3.12% 6.79% 17.41%

Average Without DumMA 4.11% 10.41% 15.35% 37.67%
With DumMA 4.48% 11.23% 16.56% 39.34%

TABLE IV
THE OVERHEAD OF OUR PROPOSED DEFENSE

The shuffle budget bs ranges from 6 to 9 in our experiments. Under
each bs, we generate the memory traces for each combination of
defense techniques. When DumMA is used, we add dummy accesses
into each shuffled regime such that each shuffled address is both read
once and written once.

The two complexity metrics of the 4 benchmarks are reported in
Figure 4. We observe that the combination of all three techniques
yields the highest security level:

1) Both metrics are many orders of magnitude better than any
other combination of techniques within the same benchmark
and under the same shuffle budget.

2) For each benchmark, both metrics grow exponentially with the
shuffle budget.

3) The # possible structures tend to grow exponentially as the
DNN gets deeper.

The overheads of our proposed defense under each shuffle budget
from 6 to 9 are listed in Table IV. As seen, very high attack
complexity can be achieved at the cost of low access overheads.
Moreover, the memory access overhead does not increase when the
DNN gets larger, making our technique easily scalable to larger DNN
models. This is because the overhead is roughly determined by the
ratio of the size of each shuffled regime to that of each layer. This
scalability is a key advantage of our approach over ORAM. ORAM
requires an Ω(logN)(×100%) access overhead where N is the size
of the memory (and must be least the size of the DNN), which
means that the access overhead must increase as the DNN becomes
larger. The effectiveness and scalability of our defense strategy make
it practical to defend the reverse engineering attacks on DNNs. Note
that the secure encryption algorithms (for which we use AES) and the
permutation function π (which is a simple transformation from AES)
are not considered as significant sources of overheads because AES
accelerators have been integrated into most processor architectures
nowadays which allow very efficient computation of AES functions.

VI. RELATED WORK

Research on DNN model stealing attacks has become popular in
the recent two years. Tramèr et al. proposed to extract DNN model
hosted in servers through prediction APIs [13]. Juuti et al. proposed
a statistical technique to detect model extraction [14]. Cache side-
channels (using co-located processes with the DNN) [15], [16], power
and electromagnetic side-channels [17], [18], and timing side-channel
[19] have also been exploited to extract the DNN model or the input
data. Our attack model is based on the memory access pattern of
normal DNN inference which does not require any additional query.
Hence detection approaches such as the one in [14] do not apply to
this attack model. Many papers have suggested using homomorphic
encryption (HE) to compute neural networks [20]–[23]. However, HE
does not hide memory access patterns and is not a countermeasure
against this attack either. Others have suggested secure multi-party
computation (MPC) to protect both the data and the neural models
[24]–[26]. Unfortunately, MPC needs to distribute the computation
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Fig. 4. # IFPs solved and # feasible structures of the DNN benchmarks under various defense techniques

to multiple computers and is not applicable to our case where the
DNN is run on a local processor.

VII. CONCLUSION

A novel defense strategy against the reverse engineering on DNNs
is proposed in this paper. The targeted attack model analyzes the
memory access pattern of the processor running the DNN and solves
an integer feasibility program to obtain all the possible structures
of each layer. In our defense strategy, three techniques are utilized
to obfuscate the memory access pattern, including oblivious shuffle,
address space layout randomization, and dummy memory access. A
modified attack based on the original attack is also formulated in
order to evaluate the security of the proposed defense. Experiments
show that, by combining all the three defense techniques, very high
attack complexity can be achieved with low overheads. It is also
shown that our defense approach easily scales to larger DNN models.
Therefore, we conclude that the DNN reverse engineering attacks
based on memory access patterns can be effectively countered using
our proposed defense approach.

ACKNOWLEDGMENTS

This work is supported by AFOSR MURI under Grant FA9550-
14-1-0351 and Northrop Grumman Corporation and University of
Maryland Seedling Grant.

REFERENCES

[1] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural
networks through side-channel information leaks,” in Proceedings of the 55th
Annual Design Automation Conference. ACM, 2018, p. 4.

[2] E. Stefanov, M. V. Dijk, E. Shi, T.-H. H. Chan, C. Fletcher, L. Ren, X. Yu, and
S. Devadas, “Path oram: An extremely simple oblivious ram protocol,” Journal of
the ACM (JACM), vol. 65, no. 4, p. 18, 2018.

[3] S. Patel, G. Persiano, M. Raykova, and K. Yeo, “Panorama: Oblivious RAM with
logarithmic overhead,” IACR Cryptology ePrint Archive, vol. 2018, p. 373, 2018,
to appear in FOCS 2018. [Online]. Available: https://eprint.iacr.org/2018/373

[4] G. Asharov, I. Komargodski, W. Lin, K. Nayak, and E. Shi, “Optorama: Optimal
oblivious RAM,” IACR Cryptology ePrint Archive, vol. 2018, p. 892, 2018.
[Online]. Available: https://eprint.iacr.org/2018/892

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao:
A small-footprint high-throughput accelerator for ubiquitous machine-learning,” in
ACM Sigplan Notices, vol. 49, no. 4. ACM, 2014, pp. 269–284.

[6] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun
et al., “Dadiannao: A machine-learning supercomputer,” in Proceedings of the
47th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Computer Society, 2014, pp. 609–622.

[7] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel:
Customizing dnn pruning to the underlying hardware parallelism,” in Proceedings
of the 44th Annual International Symposium on Computer Architecture. ACM,
2017, pp. 548–560.

[8] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal, “The melbourne
shuffle: Improving oblivious storage in the cloud,” in International Colloquium
on Automata, Languages, and Programming. Springer, 2014, pp. 556–567.

[9] B. Pinkas and T. Reinman, “Oblivious ram revisited,” in Annual Cryptology
Conference. Springer, 2010, pp. 502–519.

[10] M. T. Goodrich and M. Mitzenmacher, “Anonymous card shuffling and its appli-
cations to parallel mixnets,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2012, pp. 549–560.

[11] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating system se-
curity through efficient and fine-grained address space randomization.” in USENIX
Security Symposium, 2012, pp. 475–490.

[12] M. Bellare, P. Rogaway, and T. Spies, “The ffx mode of operation for format-
preserving encryption,” NIST submission, vol. 20, 2010.
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