ENEE 459E/CMSC 498R: Introduction to Cryptology

 Stream Cipher Class Exercise 3/29/18```
ALGORITHM 6.1
Init algorithm for RC4
Input: 16-byte key \(k\)
Output: Initial state (\(S, i, j\))
(Note: All addition is done modulo 256)
for \(i=0\) to 255 :
 \(S[i]:=i\)
 \(k[i]:=k[i \bmod 16]\)
\(j:=0\)
for \(i=0\) to 255 :
 \(j:=j+S[i]+k[i]\)
 Swap \(S[i]\) and \(S[j]\)
\(j:=0, \quad i:=0\)
return \((S, i, j)\)
```

```
ALGORITHM 6.2
GetBits algorithm for RC4
Input: Current state (S,i,j)
Output: Updated state (S,i,j); output byte y
(Note: All addition is done modulo 256)
i:=i+1
j:= j+S[i]
Swap S[i] and S[j]
t:=S[i]+S[j]
y:=S[t]
return (S,i,j),y
```

Let $S^{0}$ denote the initial state, $S^{i}$ denote the state after $i$ calls to GetBits.

Consider Event 1: $\left(S^{0}[2]=0\right) \wedge\left(S^{0}[1]=X \neq 2\right)$
What is the probability that Event 1 occurs? (For this part, assume Init outputs a perfectly random permutation of the values from 0 to 255)

Assuming Event 1 occurs, what is the value of $S^{1}[X]$ (i.e. the value in position $S[X]$ after the first iteration? $\qquad$

Assuming Event 1 occurs, what is the value of $S^{2}[X], S^{2}[2]$ (i.e. the values in positions $S[X]$ and $S[2]$ after the second iteration? $\qquad$
Assuming Event 1 occurs, what value (call this V ) is outputted in the second iteration?

Assuming Event 1 does not occur, V is uniformly distributed.
Towards what value is V biased and with what probability? $\qquad$

