Introduction to Cryptology

Lecture 6

Announcements

- HW2 due Thursday, 2/15
- Readings/Quizzes on Canvas due today (11:59pm)
- Pick up graded HW1 after class

Agenda

- Last time:
 - One time pad (OTP) (K/L 2.2)
 - Limitations of perfect secrecy (K/L 2.3)
- This time:
 - Shannon's Theorem and examples (K/L 2.4)
 - The Computational Approach (K/L 3.1)
 - Defining computationally secure SKE (K/L 3.2)

Shannon's Theorem

Let (Gen, Enc, Dec) be an encryption scheme with message space M, for which |M| = |K| = |C|. The scheme is perfectly secret if and only if:

- 1. Every key $k \in \mathbf{K}$ is chosen with equal probability $1/|\mathbf{K}|$ by algorithm *Gen*.
- 2. For every $m \in M$ and every $c \in C$, there exists a unique key $k \in K$ such that $Enc_k(m)$ outputs c.

**Theorem only applies when |M| = |K| = |C|.

Some Examples

- Is the following scheme perfectly secret?
- Message space *M* = {0,1,..., *n* − 1}. Key space *K* = {0,1,..., *n* − 1}.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns m + k.
- $Dec_k(c)$ returns c k.

Some Examples

- Is the following scheme perfectly secret?
- Message space *M* = {0,1,..., *n* − 1}. Key space *K* = {0,1,..., *n* − 1}.
- Gen() chooses a key k at random from K.
- $\operatorname{Enc}_k(m)$ returns $m + k \mod n$.
- $Dec_k(c)$ returns $c k \mod n$.

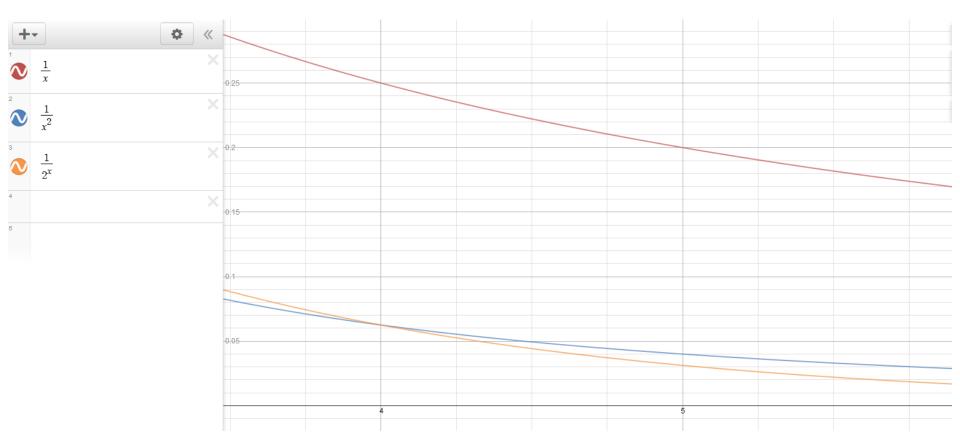
The Computational Approach

Two main relaxations:

- Security is only guaranteed against efficient adversaries that run for some feasible amount of time.
- 2. Adversaries can potentially succeed with some very small probability.

Security Parameter

- Integer valued security parameter denoted by n that parameterizes both the cryptographic schemes as well as all involved parties.
- When honest parties initialize a scheme, they choose some value n for the security parameter.
- Can think of security parameter as corresponding to the length of the key.
- Security parameter is assumed to be known to any adversary attacking the scheme.
- View run time of the adversary and its success probability as functions of the security parameter.


Polynomial Time

- Efficient adversaries = Polynomial time adversaries
 - There is some polynomial p such that the adversary runs for time at most p(n) when the security parameter is n.
 - Honest parties also run in polynomial time.
 - The adversary may be much more powerful than the honest parties.

Negligible

- Small probability of success = negligible probability
 - A function f is negligible if for every polynomial pand all sufficiently large values of n it holds that $f(n) < \frac{1}{p(n)}$.
 - Intuition, $f(n) < n^{-c}$ for every constant c, as n goes to infinity.

Negligible

Practical Implications of Computational Security

- For key size n, any adversary running in time $2^{n/2}$ breaks the scheme with probability $1/2^{n/2}$.
- Meanwhile, Gen, Enc, Dec each take time n^2 .
- If n = 128 then:
 - Gen, Enc, Dec take time 16,384
 - Adversarial run time is $2^{64} \approx 10^{18}$
- If n = 256 then:
 - *Gen, Enc, Dec* quadruples--takes time 65,536
 - Adversary run time is multiplied by 2^{64} . Becomes $2^{128} \approx 10^{38}$

Defining Computationally Secure Encryption

A private-key encryption scheme is a tuple of probabilistic polynomial-time algorithms (*Gen*, *Enc*, *Dec*) such that:

- 1. The key-generation algorithm Gen takes as input security parameter 1^n and outputs a key k denoted $k \leftarrow Gen(1^n)$. We assume WLOG that $|k| \ge n$.
- 2. The encryption algorithm Enc takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a ciphertext c denoted $c \leftarrow Enc_k(m)$.
- 3. The decryption algorithm *Dec* takes as input a key k and ciphertext c and outputs a message m denoted by $m \coloneqq Dec_k(c)$.

Correctness: For every n, every key $k \leftarrow Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Dec_k(Enc_k(m)) = m$.

Indistinguishability in the presence of an eavesdropper

Consider a private-key encryption scheme $\Pi = (Gen, Enc, Dec)$, any adversary A, and any value n for the security parameter.

The eavesdropping indistinguishability experiment $PrivK^{eav}_{A,\Pi}(n)$:

- 1. The adversary A is given input 1^n , and outputs a pair of messages m_0, m_1 of the same length.
- 2. A key k is generated by running $Gen(1^n)$, and a random bit $b \leftarrow \{0,1\}$ is chosen. A challenge ciphertext $c \leftarrow Enc_k(m_b)$ is computed and given to A.
- 3. Adversary A outputs a bit b'.
- 4. The output of the experiment is defined to be 1 if b' = b, and 0 otherwise. If $PrivK^{eav}_{A,\Pi}(n) = 1$, we say that A succeeded.

Indistinguishability in the presence of an eavesdropper

Definition: A private key encryption scheme $\Pi = (Gen, Enc, Dec)$ has indistinguishable encryptions in the presence of an eavesdropper if for all probabilistic polynomial-time adversaries A there exists a negligible function negl such that

$$\Pr\left[\operatorname{PrivK^{eav}}_{A,\Pi}(n)=1\right] \leq \frac{1}{2} + \operatorname{negl}(n),$$

Where the prob. Is taken over the random coins used by *A*, as well as the random coins used in the experiment.