Introduction to Cryptology

Lecture 4

Announcements

- HW1 due on Thursday, 2/8
- Discrete Math Readings/Quizzes on Canvas due on Tuesday, 2/13
- Class exercises from 2/1 will be returned at end of class

Agenda

- Last time:
 - Frequency Analysis (K/L 1.3)
 - Background and terminology
- This time:
 - Formal definition of symmetric key encryption (K/L 2.1)
 - Definition of information-theoretic security (K/L 2.1)
 - Variations on the definition and proofs of equivalence (K/L 2.1)
 - Class Exercise

Formally Defining a Symmetric Key Encryption Scheme

Syntax

- An encryption scheme is defined by three algorithms
 - Gen, Enc, Dec
- Specification of message space M with |M| > 1.
- Key-generation algorithm *Gen*:
 - Probabilistic algorithm
 - Outputs a key k according to some distribution.
 - Keyspace *K* is the set of all possible keys
- Encryption algorithm *Enc*:
 - Takes as input key $k \in K$, message $m \in M$
 - Encryption algorithm may be probabilistic
 - Outputs ciphertext $c \leftarrow Enc_k(m)$
 - Ciphertext space C is the set of all possible ciphertexts
- Decryption algorithm *Dec*:
 - Takes as input key $k \in K$, ciphertext $c \in C$
 - Decryption is deterministic
 - Outputs message $m \coloneqq Dec_k(c)$

Distributions over K, M, C

- Distribution over **K** is defined by running *Gen* and taking the output.
 - For $k \in K$, $\Pr[K = k]$ denotes the prob that the key output by *Gen* is equal to k.
- For $m \in M$, $\Pr[M = m]$ denotes the prob. That the message is equal to m.
 - Models a priori knowledge of adversary about the message.
 - E.g. Message is English text.
- Distributions over *K* and *M* are independent.
- For c ∈ C, Pr[C = c] denotes the probability that the ciphertext is c.
 - Given *Enc*, distribution over *C* is fully determined by the distributions over *K* and *M*.

Definition of Perfect Secrecy

An encryption scheme (*Gen, Enc, Dec*) over a message space *M* is perfectly secret if for every probability distribution over *M*, every message *m* ∈ *M*, and every ciphertext *c* ∈ *C* for which Pr[*C* = *c*] > 0: Pr[*M* = *m* |*C* = *c*] = Pr[*M* = *m*].

An Equivalent Formulation

Lemma: An encryption scheme
 (*Gen, Enc, Dec*) over a message space *M* is
 perfectly secret if and only if for every
 probability distribution over *M*, every message
 m ∈ *M*, and every ciphertext *c* ∈ *C*:
 Pr[*C* = *c* |*M* = *m*] = Pr[*C* = *c*].

Basic Logic

- Usually want to prove statements like $P \rightarrow Q$ ("if P then Q")
- To prove a statement $P \rightarrow Q$ we may:
 - Assume *P* is true and show that *Q* is true.
 - Prove the contrapositive: Assume that Q is false and show that P is false.

Basic Logic

• Consider a statement $P \leftrightarrow Q$ (P if and only if Q)

- Ex: Two events X, Y are independent if and only if $Pr[X \land Y] = Pr[X] \cdot Pr[Y].$

To prove a statement P ↔ Q it is sufficient to prove:

$$-P \rightarrow Q$$

$$-Q \rightarrow P$$

Proof (Preliminaries)

• Recall Bayes' Theorem:

$$-\Pr[A \mid B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B]}$$

• We will use it in the following way:

$$-\Pr[M = m | C = c] = \frac{\Pr[C = c | M = m] \cdot \Pr[M = m]}{\Pr[C = c]}$$

Proof: \rightarrow

• To prove: If an encryption scheme is perfectly secret then

"for every probability distribution over M, every message $m \in M$, and every ciphertext $c \in C$: $\Pr[C = c | M = m] = \Pr[C = c]$."

Proof (cont'd)

- Fix some probability distribution over M, some message $m \in M$, and some ciphertext $c \in C$.
- By perfect secrecy we have that

$$\Pr[M = m | C = c] = \Pr[M = m].$$

• By Bayes' Theorem we have that: $Pr[M = m | C = c] = \frac{Pr[C = c | M = m] \cdot Pr[M = m]}{Pr[C = c]} = Pr[M = m].$

• Rearranging terms we have: Pr[C = c | M = m] = Pr[C = c].

Perfect Indistinguishability

Lemma: An encryption scheme
 (*Gen, Enc, Dec*) over a message space *M* is
 perfectly secret if and only if for every
 probability distribution over *M*, every
 *m*₀, *m*₁ ∈ *M*, and every ciphertext *c* ∈ *C*:
 Pr[*C* = *c* |*M* = *m*₀] = Pr[*C* = *c* |*M* = *m*₁].

Proof (Preliminaries)

- Let $F, E_1, ..., E_n$ be events such that $\Pr[E_1 \lor \cdots \lor E_n] = 1$ and $\Pr[E_i \land E_j] = 0$ for all $i \neq j$.
- The E_i partition the space of all possible events so that with probability 1 exactly one of the events E_i occurs. Then

 $\Pr[F] = \sum_{i=1}^{n} \Pr[F \land E_i]$

Proof Preliminaries

- We will use the above in the following way:
- For each $m_i \in M$, E_{m_i} is the event that $M = m_i$.
- F is the event that C = c.
- Note $\Pr[E_{m_1} \lor \cdots \lor E_{m_n}] = 1$ and $\Pr[E_{m_i} \land E_{m_j}] = 0$ for all $i \neq j$.
- So we have:

$$-\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m]$$
$$= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]$$

Proof:→

Assume the encryption scheme is perfectly secret. Fix messages $m_0, m_1 \in M$ and ciphertext $c \in C$. $\Pr[C = c | M = m_0] = \Pr[C = c] = \Pr[C = c | M = m_1]$

Proof ←

• Assume that for every probability distribution over M, every $m_0, m_1 \in M$, and every ciphertext $c \in C$ for which $\Pr[C = c] > 0$:

 $\Pr[C = c | M = m_0] = \Pr[C = c | M = m_1].$

- Fix some distribution over M, and arbitrary $m_0 \in M$ and $c \in C$.
- Define $p = \Pr[C = c | M = m_0]$.
- Note that for all m: $\Pr[C = c | M = m] = \Pr[C = c | M = m_0] = p.$

•
$$\Pr[C = c] = \sum_{m \in M} \Pr[C = c \land M = m]$$

 $= \sum_{m \in M} \Pr[C = c | M = m] \cdot \Pr[M = m]$
 $= \sum_{m \in M} p \cdot \Pr[M = m]$
 $= p \cdot \sum_{m \in M} \Pr[M = m]$
 $= p$
 $= \Pr[C = c | M = m_0]$
Since *m* was arbitrary, we have shown that
 $\Pr[C = c] = \Pr[C = c | M = m]$ for all $c \in C, m \in M$.

So we conclude that the scheme is perfectly secret.