Introduction to Cryptology

Lecture 21

Announcements

- HW 8 due today
- HW 9 up on course webpage
 Due on Tuesday, 5/1.

Agenda

- Last time:
 - Factoring
 - -RSA
 - Cyclic Groups
- This time:
 - More on Cyclic Groups
 - Hard problems over cyclic groups
 - Elliptic Curve Groups

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z_{p}^{*} is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in Z_p^* is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} . Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$. g = 2 is a generator of Z^*_{11} :

2 ⁰	1
21	2
2 ²	4
2 ³	8
24	$16 \rightarrow 5$
2 ⁵	10
2 ⁶	$20 \rightarrow 9$
27	$18 \rightarrow 7$
2 ⁸	$14 \rightarrow 3$
2 ⁹	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent.
 Addition of two even numbers mod p − 2 gives an even number mod p − 1, since for prime p > 3, p − 1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Discrete Logarithm Problem

The discrete-log experiment $DLog_{A,G}(n)$

- 1. Run $G(1^n)$ to obtain (G, q, g) where G is a cyclic group of order q (with ||q|| = n) and g is a generator of G.
- 2. Choose a uniform $h \in G$
- 3. A is given G, q, g, h and outputs $x \in Z_q$
- 4. The output of the experiment is defined to be 1 if $g^x = h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to G if for all ppt algorithms A there exists a negligible function neg such that

$$\Pr[DLog_{A,G}(n) = 1] \le neg(n).$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_1 = g^{x_1}, h_2 = g^{x_2}$, compute $g^{x_1 \cdot x_2}$.

The DDH Problem

We say that the DDH problem is hard relative to G if for all ppt algorithms A, there exists a negligible function neg such that

$$|\Pr[A(G, q, g, g^{x}, g^{y}, g^{z}) = 1] - \Pr[A(G, q, g, g^{x}, g^{y}, g^{xy}) = 1]| \le neg(n).$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption

Elliptic Curves over Finite Fields

Why use them?

- No known sub-exponential time algorithm for solving DL in appropriate Curves.
- Implementation will be more efficient.

Elliptic Curves over Finite Fields

- Z_p is a finite field for prime p.
- Let $p \ge 5$ be a prime
- Consider equation *E* in variables *x*, *y* of the form:

$$y^2 \coloneqq x^3 + Ax + B \mod p$$

Where A, B are constants such that $4A^3 + 27B^2 \neq 0$. (this ensures that $x^3 + Ax + B \mod p$ has no repeated roots). Let $E(Z_p)$ denote the set of pairs $(x, y) \in Z_p \times Z_p$ satisfying the above equation as well as a special value O.

$$E(Z_p) \coloneqq \{(x, y) | x, y \in Z_p \text{ and } y^2 = x^3 + Ax + B \text{ mod } p\} \cup \{0\}$$

The elements $E(Z_p)$ are called the points on the Elliptic Curve E and O is called the point at infinity.