Introduction to Cryptology

Lecture 21

Announcements

- HW 8 due today
- HW 9 up on course webpage
- Due on Tuesday, 5/1.

Agenda

- Last time:
- Factoring
- RSA
- Cyclic Groups
- This time:
- More on Cyclic Groups
- Hard problems over cyclic groups
- Elliptic Curve Groups

Prime-Order Cyclic Groups

Consider $Z^{*}{ }_{p}$, where p is a strong prime.

- Strong prime: $p=2 q+1$, where q is also prime.
- Recall that $Z^{*}{ }_{p}$ is a cyclic group of order

$$
p-1=2 q .
$$

The subgroup of quadratic residues in $Z^{*}{ }_{p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider $Z^{*}{ }_{11}$.
Note that 11 is a strong prime, since $11=2 \cdot 5+1$.
$g=2$ is a generator of $Z^{*}{ }_{11}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 5$
2^{5}	10
2^{6}	$20 \rightarrow 9$
2^{7}	$18 \rightarrow 7$
2^{8}	$14 \rightarrow 3$
2^{9}	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^{*} p$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}=q$.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers $\bmod p-2$ gives an even number $\bmod p-1$, since for prime $p>3, p-1$ is even.)
- Cyclic -any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^{2}.

The Discrete Logarithm Problem

The discrete-log experiment $D \log _{A, \boldsymbol{G}}(n)$

1. Run $\boldsymbol{G}\left(1^{n}\right)$ to obtain (G, q, g) where G is a cyclic group of order q (with $|\mid q \|=n$) and g is a generator of G.
2. Choose a uniform $h \in G$
3. A is given G, q, g, h and outputs $x \in Z_{q}$
4. The output of the experiment is defined to be 1 if $g^{x}=h$ and 0 otherwise.

Definition: We say that the DL problem is hard relative to \boldsymbol{G} if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[D \log _{A, G}(n)=1\right] \leq \operatorname{neg}(n)
$$

The Diffie-Hellman Problems

The CDH Problem

Given (G, q, g) and uniform $h_{1}=g^{x_{1}}, h_{2}=g^{x_{2}}$, compute $g^{x_{1} \cdot x_{2}}$.

The DDH Problem

We say that the DDH problem is hard relative to \boldsymbol{G} if for all ppt algorithms A, there exists a negligible function neg such that

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right] \\
& \quad-\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \mid \leq n e g(n) .
\end{aligned}
$$

Relative Hardness of the Assumptions

Breaking DLog \rightarrow Breaking CDH \rightarrow Breaking DDH

DDH Assumption \rightarrow CDH Assumption \rightarrow DLog Assumption

Elliptic Curves over Finite Fields

Why use them?

- No known sub-exponential time algorithm for solving DL in appropriate Curves.
- Implementation will be more efficient.

Elliptic Curves over Finite Fields

- Z_{p} is a finite field for prime p.
- Let $p \geq 5$ be a prime
- Consider equation E in variables x, y of the form:

$$
y^{2}:=x^{3}+A x+B \bmod p
$$

Where A, B are constants such that $4 A^{3}+27 B^{2} \neq 0$. (this ensures that $x^{3}+A x+B \bmod p$ has no repeated roots). Let $E\left(Z_{p}\right)$ denote the set of pairs $(x, y) \in Z_{p} \times Z_{p}$ satisfying the above equation as well as a special value O.

$$
E\left(Z_{p}\right):=\left\{(x, y) \mid x, y \in Z_{p} \text { and } y^{2}=x^{3}+A x+B \bmod p\right\} \cup\{0\}
$$

The elements $E\left(Z_{p}\right)$ are called the points on the Elliptic Curve E and O is called the point at infinity.

