Introduction to Cryptology

Lecture 19

Announcements

- HW8 is up on course webpage, due 4/24
- Sign up for EC, Current Events EC

Agenda

More Number Theory!

Time Complexity of Euclidean Algorithm

When finding gcd(a, b), the "b" value gets halved every two rounds.

Why?

Time complexity: $2\log(b)$.

This is polynomial in the length of the input.

Why?

Getting Back to Z^*_{p}

Group $Z_p^* = \{1, ..., p-1\}$ operation: multiplication modulo p.

Order of a finite group is the number of elements in the group.

Order of Z^*_p is p-1.

Fermat's Little Theorem

Theorem: For prime p, integer a:

$$a^p \equiv a \bmod p$$
.

Useful Fact

Fact: For prime p and integers a, b, If $p|a \cdot b$ and $p \nmid a$, then $p \mid b$.

Corollary of Fermat's Little Theorem

Corollary: For prime p and a such that (a, p) = 1: $a^{p-1} \equiv 1 \bmod p$

Proof:

- By Fermat's Little Theorem we have that $a^p \equiv a \bmod p$. By definition of modulo, this means that $p \mid (a^p a)$. Rearranging, this implies that $p \mid a \cdot (a^p 1)$.
- Now, since gcd(a, p) = 1, we have that $p \nmid a$. Applying "useful fact" with a = a and $b = (a^p 1)$, we have that $p \mid (a^p 1)$.
- Finally, by definition of modulo, we have that $a^{p-1} \equiv 1 \mod p$.

Note: For prime p, p-1 is the order of the group Z^*_{p} .

Generalized Theorem

Theorem: Let G be a finite group with m = |G|, the order of the group. Then for any element $g \in G$, $g^m = 1$.

Corollary of Fermat's Little Theorem is a special case of the above when G is the multiplicative group $Z^*_{\ p}$ and p is prime.

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, ..., N-1\}$ have multiplicative inverses $mod\ N$?
 - a such that gcd(a, N) = 1 has multiplicative inverse by Extended Euclidean Algorithm.
 - a such that gcd(a, N) > 1 does not, since gcd(a, N) is the smallest positive integer that can be written in the form Xa + YN for integer X, Y.
- Define $Z^*_N := \{a \in \{1, ..., N-1\} | \gcd(a, N) = 1\}.$
- Z^*_N is an abelian, multiplicative group.
 - Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of Z^*_N ?
- This has a name. The order of Z_N^* is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N = p \cdot q$, where p, q are distinct primes.
 - $-\phi(N) = N p q + 1 = p \cdot q p 1 + 1 = (p-1)(q-1).$
 - Why?

Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let $N = \prod_i p_i^{e_i}$ where the $\{p_i\}$ are distinct primes and $e_i \geq 1$. Then

$$\phi(N) = \prod_{i} p_i^{e_i - 1} (p_i - 1).$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem:

For a such that gcd(a, N) = 1: $a^{\phi(N)} \equiv 1 \mod N$.

Another Useful Theorem

Theorem: Let G be a finite group with m = |G| > 1. Then for any $g \in G$ and any integer x, we have $g^x = g^{x \mod m}$.

Proof: We write $x = a \cdot m + b$, where a is an integer and $b \equiv x \mod m$.

- $g^x = g^{a \cdot m + b} = (g^m)^a \cdot g^b$
- By "generalized theorem" we have that $(g^m)^a \cdot g^b = 1^a \cdot g^b = g^b = g^{x \bmod m}.$

An Example:

Compute $3^{25} \mod 35$ by hand.

$$\phi(35) = \phi(5 \cdot 7) = (5 - 1)(7 - 1) = 24$$

 $3^{25} \equiv 3^{25 \mod 24} \mod 35 \equiv 3^1 \mod 35$
 $\equiv 3 \mod 35$.

Background for RSA

Recall that we saw last time that

$$a^m \equiv a^{m \bmod \phi(N)} \bmod N.$$

For $e \in Z_N^*$, let $f_e: Z_N^* \to Z_N^*$ be defined as $f_e(x) \coloneqq x^e \mod N$.

Theorem: $f_e(x)$ is a permutation.

Proof: To prove the theorem, we show that $f_e(x)$ is invertible.

Let d be the multiplicative inverse of $e \mod \phi(N)$.

Then for $y \in Z_N^*$, $f_d(y) := y^d \mod N$ is the inverse of f_e .

To see this, we show that $f_d(f_e(x)) = x$.

$$f_d(f_e(x)) = (x^e)^d \mod N = x^{e \cdot d} \mod N = x^{e \cdot d \mod \phi(N)} \mod N = x^1 \mod N = x \mod N.$$

Note: Given d, it is easy to compute the inverse of f_e

However, we saw in the homework that given only e, N, it is hard to find d, since finding d implies that we can factor $N = p \cdot q$.

This will be important for cryptographic applications.