Introduction to Cryptology

Lecture 19

Announcements

- HW8 is up on course webpage, due $4 / 24$
- Sign up for EC, Current Events EC

Agenda

- More Number Theory!

Time Complexity of Euclidean Algorithm

When finding $\operatorname{gcd}(a, b)$, the " b " value gets halved every two rounds.
Why?

Time complexity: $2 \log (b)$.
This is polynomial in the length of the input.
Why?

Getting Back to Z^{*}

p
Group $Z^{*}{ }_{p}=\{1, \ldots, p-1\}$ operation: multiplication modulo p.
Order of a finite group is the number of elements in the group.
Order of $Z^{*}{ }_{p}$ is $p-1$.

Fermat's Little Theorem

Theorem: For prime p, integer a :

$$
a^{p} \equiv a \bmod p
$$

Useful Fact

Fact: For prime p and integers a, b, If $p \mid a \cdot b$ and $p \nmid a$, then $p \mid b$.

Corollary of Fermat's Little Theorem

Corollary: For prime p and a such that $(a, p)=1$:

$$
a^{p-1} \equiv 1 \bmod p
$$

Proof:

- By Fermat's Little Theorem we have that $a^{p} \equiv a \bmod p$. By definition of modulo, this means that $p \mid\left(a^{p}-a\right)$. Rearranging, this implies that $p \mid a \cdot\left(a^{p}-1\right)$.
- Now, since $\operatorname{gcd}(a, p)=1$, we have that $p \nmid a$. Applying "useful fact" with $a=a$ and $b=\left(a^{p}-1\right)$, we have that $p \mid\left(a^{p}-1\right)$.
- Finally, by definition of modulo, we have that $a^{p-1} \equiv 1 \bmod p$.

Note: For prime $p, p-1$ is the order of the group $Z^{*}{ }_{p}$.

Generalized Theorem

Theorem: Let G be a finite group with $m=|G|$, the order of the group. Then for any element $g \in G, g^{m}=1$.

Corollary of Fermat's Little Theorem is a special case of the above when G is the multiplicative group $Z^{*}{ }_{p}$ and p is prime.

Multiplicative Groups Mod N

- What about multiplicative groups modulo N, where N is composite?
- Which numbers $\{1, \ldots, N-1\}$ have multiplicative inverses mod N ?
$-a$ such that $\operatorname{gcd}(a, N)=1$ has multiplicative inverse by Extended Euclidean Algorithm.
$-a$ such that $\operatorname{gcd}(a, N)>1$ does not, since $\operatorname{gcd}(a, N)$ is the smallest positive integer that can be written in the form $X a+Y N$ for integer X, Y.
- Define $Z^{*}{ }_{N}:=\{a \in\{1, \ldots, N-1\} \mid \operatorname{gcd}(a, N)=1\}$.
- $Z^{*}{ }_{N}$ is an abelian, multiplicative group.
- Why does closure hold?

Order of Multiplicative Groups Mod N

- What is the order of $Z^{*}{ }_{N}$?
- This has a name. The order of $Z^{*}{ }_{N}$ is the quantity $\phi(N)$, where ϕ is known as the Euler totient function or Euler phi function.
- Assume $N=p \cdot q$, where p, q are distinct primes.
$-\phi(N)=N-p-q+1=p \cdot q-p-1+1=$ $(p-1)(q-1)$.
- Why?

Order of Multiplicative Groups Mod N

General Formula:
Theorem: Let $N=\prod_{i} p_{i}{ }^{e_{i}}$ where the $\left\{p_{i}\right\}$ are distinct primes and $e_{i} \geq 1$. Then

$$
\phi(N)=\prod_{i} p_{i}^{e_{i}-1}\left(p_{i}-1\right)
$$

Another Special Case of Generalized Theorem

Corollary of generalized theorem:
For a such that $\operatorname{gcd}(a, N)=1$:

$$
a^{\phi(N)} \equiv 1 \bmod N
$$

Another Useful Theorem

Theorem: Let G be a finite group with $m=|G|>$ 1. Then for any $g \in G$ and any integer x, we have

$$
g^{x}=g^{x \bmod m}
$$

Proof: We write $x=a \cdot m+b$, where a is an integer and $b \equiv x \bmod m$.

- $g^{x}=g^{a \cdot m+b}=\left(g^{m}\right)^{a} \cdot g^{b}$
- By "generalized theorem" we have that

$$
\left(g^{m}\right)^{a} \cdot g^{b}=1^{a} \cdot g^{b}=g^{b}=g^{x \bmod m}
$$

An Example:

Compute $3^{25} \bmod 35$ by hand.

$$
\begin{gathered}
\phi(35)=\phi(5 \cdot 7)=(5-1)(7-1)=24 \\
3^{25} \equiv 3^{25} \bmod 24 \bmod 35 \equiv 3^{1} \bmod 35 \\
\equiv 3 \bmod 35 .
\end{gathered}
$$

Background for RSA

Recall that we saw last time that

$$
a^{m} \equiv a^{m \bmod \phi(N)} \bmod N
$$

For $e \in Z^{*}{ }_{N}$, let $f_{e}: Z_{N}^{*} \rightarrow Z_{N}^{*}$ be defined as $f_{e}(x):=x^{e} \bmod N$.
Theorem: $f_{e}(x)$ is a permutation.
Proof: To prove the theorem, we show that $f_{e}(x)$ is invertible.
Let d be the multiplicative inverse of $e \bmod \phi(N)$.
Then for $y \in Z_{N}^{*}, f_{d}(y):=y^{d} \bmod N$ is the inverse of f_{e}.
To see this, we show that $f_{d}\left(f_{e}(x)\right)=x$.
$f_{d}\left(f_{e}(x)\right)=\left(x^{e}\right)^{d} \bmod N=x^{e \cdot d} \bmod N=x^{e \cdot d \bmod \phi(N)} \bmod N=x^{1} \bmod N=$ $x \bmod N$.

Note: Given d, it is easy to compute the inverse of f_{e}
However, we saw in the homework that given only e, N, it is hard to find d, since finding d implies that we can factor $N=p \cdot q$.
This will be important for cryptographic applications.

