
Introduction to Cryptology 

Lecture 17 



Announcements 

• HW7 due on 4/12 

• Reminder to sign up for scholarly paper EC 



Agenda 

• Last time: 

– Practical constructions of block ciphers (6.2) 

• Feistel, AES, DES 

– Please read (6.2.3) on your own on Differential 
and Linear Cryptanalysis 

• This time: 

– Practical constructions of CRHF (6.3) 

– Number Theory (8.1) 

 

 



Details on AES 

• In January 1997, the United States National Institute of Standards 
and Technology (NIST) announced a competition to select a new 
block cipher—to be called the Advanced Encryption Standard, or 
AES 

• 15 submissions from all over the world. Each team’s candidate 
cipher was intensively analyzed by members of NIST, the public, and 
(especially) the other teams. Two workshops were held (‘98, ’99) to 
analyze the various submissions. Following the second workshop, 
NIST narrowed the field down to 5 “finalists” and the second round 
of the competition began. A third AES workshop was held in April 
2000, inviting additional scrutiny on the five finalists. 

• In October 2000, NIST announced that the winning algorithm was 
Rijndael (a block cipher designed by Belgian cryptographers Vincent 
Rijmen and Joan Daemen) 
 



Details on AES 
A 4-by-4 array of bytes called the state is modified in a series of rounds. The state is 
initialized to the input to the cipher (128 bits = 16 bytes). The following operations are then 
applied in each round: 

1. Stage 1 – AddRoundKey: A 128-bit sub-key is derived from the master key, and is 
interpreted as a 4-by-4 array of bytes. state updated by XORing it with this sub-key. 

2. Stage 2 – SubBytes: Each byte of state is replaced by another byte according to a single 
fixed lookup table S. This substitution table (or S-box) is a bijection over 0, 1 8. 

3. Stage 3 – ShiftRows: The bytes in each row of state are cyclically shifted to the left as 
follows: the first row of the array is untouched, the second row is shifted one place to 
the left, the third row is shifted two places to the left, and the fourth row is shifted 
three places to the left. All shifts are cyclic so that, e.g., in the second row the first byte 
becomes the fourth byte. 

4. Stage 4 – MixColumns: An invertible transformation is applied to the four bytes in each 
column. (linear transformation—i.e., matrix multiplication—over an appropriate field.) 

 If two inputs differ in b > 0 bytes, then transformation yields two outputs differing 
 in at least 5 − b bytes. 

 In the final round, MixColumns is replaced with AddRoundKey. Why? 

• To date, no practical cryptanalytic attacks significantly better than a exhaustive search.  



Preliminaries 

• How much security can we hope for from a 
CRHF that outputs ℓ bits? 

• Discuss the “birthday bound” 

– No matter what function is used, collisions can be 

found with high probability after making 2ℓ/2 
queries. 



Hash Functions From Block Ciphers 

• Hash functions are generally constructed in 
two steps:  

– First, a compression function (fixed-length hash 
function) ℎ is designed 

– Next, some mechanism (e.g. Merkle-Damgard) is 
used to extend ℎ so as to handle arbitrary input 
lengths 

• We will focus on the first step 



Hash Functions From Block Ciphers 

• Davies-Meyer construction: 
• 𝐹 is a block-cipher will 𝑛-bit key and ℓ-bit block length. 

 

 

 

 

 

 

 

• Above forms a compression function from 𝑛 + ℓ bits to 𝑛 
bits. 



Security Analysis 

• We do not know how to prove collision-
resistance of the compression function based 
on the assumption that 𝐹 is a strong PRP. 

• Requires stronger assumption that 𝐹 behaves 
like an ideal cipher. 

– Like a truly random permutation, except can query 
oracle on different keys. 

– Each key 𝑘 ∈  0, 1 𝑛 specifies an independent, 
uniform permutation 𝐹(𝑘,·) on ℓ-bit strings. 



Security Analysis 

• Theorem: If 𝐹 is modeled as an ideal cipher, 
then the Davies-Meyer construction yields a 
collision-resistant compression function. 
Concretely, any attacker making 𝑞 <

 2ℓ/2 queries to its ideal-cipher oracles finds a 
collision with probability at most 𝑞2/2ℓ. 



MD5 

• 128-bit output length.  
• Designed in 1991, and for several years was believed to be collision-

resistant. Over a period of several years, various weaknesses began 
to be found in MD5 but 

• these did not appear to lead to any easy way to find collisions.  
• In 2004 a team of Chinese cryptanalysts presented a new method 

for finding 
• collisions in MD5 and were able to demonstrate an explicit collision!  
• Since then, the attack has been improved—collisions can be found 

in under a minute on a desktop PC—and extended so that even 
“controlled collisions” (e.g., two postscript files generating arbitrary 
viewable content) can be found. 

• Due to these attacks, MD5 should no longer be used today for any 
application requiring cryptographic security. 



SHA-0, SHA-1, SHA-2 

• The Secure Hash Algorithm (SHA) refers to a series of cryptographic 
hash functions standardized by NIST.  

• SHA-1, was introduced in 1995. This algorithm has a 160-bit output 
length, and supplanted a predecessor called SHA-0 which was 
withdrawn due to unspecified flaws discovered in that algorithm. 

• Theoretical analysis over the past few years indicates that collisions 
in SHA-1 can be found using significantly fewer than the 280 hash 
function evaluations that would be necessary using a birthday 
attack. 

• Recently an explicit collision has been found. 
• It is therefore recommended to migrate to SHA-2, which does not 

currently appear to have the same weaknesses.  
• SHA-2 comprises two related functions: SHA-256 and SHA-512, with 

256- and 512-bit output lengths, respectively. 



SHA-0, SHA-1, SHA-2 

• All hash functions in the SHA family are 
constructed using the same basic design:  
– A compression function is first defined using the 

Davies-Meyer construction as applied to some block 
cipher  

– Extended to support arbitrary length inputs using the 
Merkle-Damg°ard transform.  

• The block cipher in each case was designed 
specifically for building the compression function.  
– Block ciphers SHACAL-1 (for SHA-1) and SHACAL-2 (for 

SHA-2). Have large block lengths (160 and 256 bits 
respectively) and 512-bit key lengths. 



SHA-3 (Keccak) 

• NIST announced in late 2007 a public competition to design 
a new cryptographic hash function to be called SHA-3.  

• Submitted algorithms were required to support both 256- 
and 512-bit output lengths. 

• 51 first-round candidates were narrowed down to 14 in 
December, 2008, and these were further reduced to five 
finalists in 2010. The remaining candidates were subject to 
intense scrutiny by the cryptographic community over the 
next two years.  

• In October, 2012, NIST announced the selection of Keccak 
as the winner of the competition. 

• This algorithm is currently undergoing standardization as 
the next-generation replacement for SHA-2. 



SHA-3 (Keccak) 

• Keccak is unusual in several respects.  
– One of the reasons Keccak was chosen is because its structure is very 

different from that of SHA-1 and SHA-2.  

• It is based on an unkeyed permutation 𝑓 with a large block length 
of 1600 bits; this is radically different from, e.g., the Davies-Meyer 
construction which relies on a keyed permutation.  

• Keccak does not use the Merkle-Damgard transform to handle 
arbitrary input lengths. Instead, it uses a newer approach called the 
sponge construction.  

• Keccak—and the sponge construction more generally—can be 
analyzed in the random-permutation model  
– Here parties have access to an oracle for a random permutation 

𝑓 ∶  0, 1 ℓ →  0, 1 ℓ (and possibly its inverse).  
– This is weaker than the ideal-cipher model. 



Modular Arithmetic 

Definition of modulo: 

We say that two integers 𝑎, 𝑏 are congruent 
modulo 𝑝 denoted by 

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑝 

If 
𝑝 | (𝑎 − 𝑏) 

(i.e. 𝑝 divides (𝑎 − 𝑏)). 



Modular Arithmetic 

Examples:  All of the following are true 
2 ≡ 15 𝑚𝑜𝑑 13 

28 ≡ 15 𝑚𝑜𝑑 13 
41 ≡ 15 𝑚𝑜𝑑 13 

 
−11 ≡ 15 𝑚𝑜𝑑 13 

 



Modular Arithmetic 

Operation:  addition mod p 

Regular addition, take modulo p. 

 

Example: 8 + 10 𝑚𝑜𝑑 13 ≡ 18 𝑚𝑜𝑑 13 ≡
5 𝑚𝑜𝑑 13. 



Properties of Addition mod p 

Consider the set 𝑍𝑝 of integers 0,1, … , 𝑝 − 1  and the operation 
addition mod p. 

• Closure:  Adding two numbers in 𝑍𝑝 and taking mod p yields a 
number in 𝑍𝑝. 

• Identitiy:  For every 𝑎 ∈ 𝑍𝑝, 0 + 𝑎 𝑚𝑜𝑑 𝑝 ≡ 𝑎 𝑚𝑜𝑑 𝑝. 

• Inverse:  For every 𝑎 ∈ 𝑍𝑝, there exists a 𝑏 ∈ 𝑍𝑝 such that 
𝑎 + 𝑏 ≡ 0 𝑚𝑜𝑑 𝑝. 
– 𝑏 is simply the negation of 𝑎 (𝑏 = −𝑎). 
– Note that using the property of inverse, we can do subtraction.  We 

define 𝑐 − 𝑑 𝑚𝑜𝑑 𝑝 to be equivalent to 𝑐 + −𝑑 𝑚𝑜𝑑 𝑝. 

• Associativity:  For every 𝑎, 𝑏, 𝑐 ∈ 𝑍𝑝: 
𝑎 + 𝑏 + 𝑐 = 𝑎 + 𝑏 + 𝑐 𝑚𝑜𝑑 𝑝. 

 

𝑍𝑝 is a group with respect to addition! 
 

 



Definition of a Group 

A group is a set 𝐺 along with a binary operation ∘ for which 
the following conditions hold: 
• Closure:  For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ ∈ 𝐺. 
• Identity:  There exists an identity 𝑒 ∈ 𝐺 such that for all 

𝑔 ∈ 𝐺, 𝑒 ∘ 𝑔 = 𝑔 = 𝑔 ∘ 𝑒. 
• Inverse:  For all 𝑔 ∈ 𝐺 there exists an element ℎ ∈ 𝐺 such 

that 𝑔 ∘ ℎ = 𝑒 = ℎ ∘ 𝑔.  Such an ℎ is called an inverse of 𝑔. 
• Associativity:  For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺, 𝑔1 ∘ 𝑔2 ∘ 𝑔3 = 𝑔1 ∘

𝑔2 ∘ 𝑔3 . 
 
When 𝐺 has a finite number of elements, we say 𝐺 is finite 
and let |𝐺| denote the order of the group. 



Abelian Group 

A group 𝐺 with operation ∘ is abelian if the 
following holds: 

• Commutativity: For all 𝑔, ℎ ∈ 𝐺, 𝑔 ∘ ℎ = ℎ ∘ 𝑔. 

 

We will always deal with finite, abelian groups. 



Other groups over the integers 

• We will be interested mainly in multiplicative 
groups over the integers, since there are 
computational problems believed to be hard 
over such groups. 

– Such hard problems are the basis of number-
theoretic cryptography. 

• Group operation is multiplication mod p, 
instead of addition mod p. 

 



Multiplication mod p 

Example: 
3 ⋅ 8 𝑚𝑜𝑑 13 ≡ 24 𝑚𝑜𝑑 13 ≡ 11 𝑚𝑜𝑑 13. 



Multiplicative Groups 

Is 𝑍𝑝 a group with respect to multiplication mod 

p? 

• Closure—YES 

• Identity—YES (1 instead of 0) 

• Associativity—YES  

• Inverse—NO  

– 0 has no inverse since there is no integer 𝑎 such 
that 0 ⋅ 𝑎 ≡ 1 𝑚𝑜𝑑 𝑝. 

 



 



Multiplicative Group 

For 𝑝 prime, define 𝑍∗
𝑝 = {1, … , 𝑝 − 1} with operation 

multiplication mod 𝑝. 
 

We will see that 𝑍∗
𝑝

 is indeed a multiplicative group! 

 

To prove that 𝑍∗
𝑝

 is a multiplicative group, it is sufficient 
to prove that every element has a multiplicative inverse 
(since we have already argued that all other properties of 
a group are satisfied). 
This is highly non-trivial, we will see how to prove it using 
the Euclidean Algorithm. 


