Introduction to Cryptology

Lecture 15

Announcements

- HW6 posted on course webpage, due Thursday 4/5
- Extended Office Hours:
 - Tuesday 3:00-4:30pm
 - (same Monday hours: 3:30-4:30pm)

Agenda

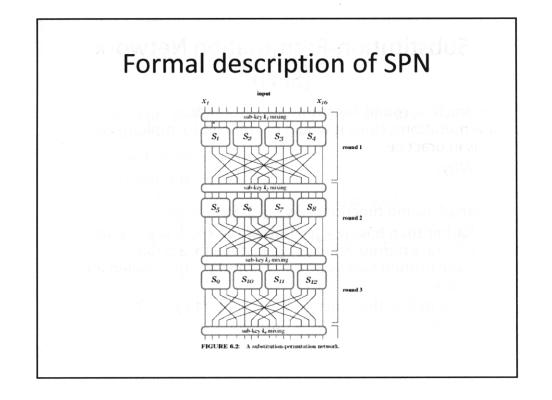
- Last time
 - Sponge Construction
 - Practical constructions of Stream Ciphers (K/L 6.1)
- This time
 - Practical constructions of Block Ciphers (K/L 6.2)

Substitution-Permutation Network (SPN)

In practice, round-functions are not random permutations, since it would be difficult to implement this in practice.

• Why?

Instead, round functions have a specific form:


Rather than having a portion of the key k specify an arbitrary permutation f, we instead fix a public "substitution function" (i.e. permutation) S, called an S-box.

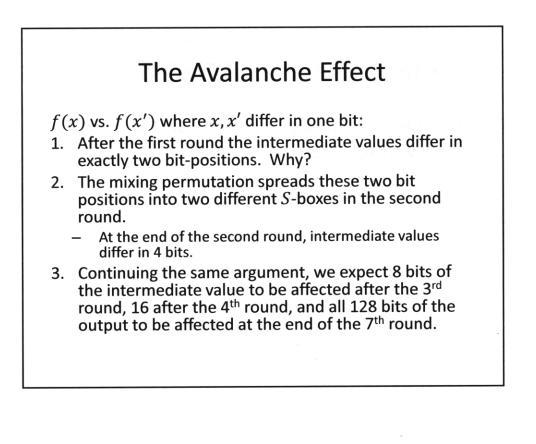
• Let k define the function f given by $f(x) = S(k \oplus x)$.

Informal Description of SPN

- 1. Key mixing: Set $x \coloneqq x \oplus k$, where k is the current-round sub-key.
- 2. Substitution: Set $x \coloneqq S_1(x_1) || \cdots || S_8(x_8)$, where x_i is the *i*-th byte of x.
- 3. Permutation: Permute the bits of x to obtain the output of the round.
- 4. Final mixing step: After the last round there is a final keymixing step. The result is the output of the cipher.
 - Why is this needed?
- Different sub-keys (round keys) are used in each round.
 - Master key is used to derive round sub-keys according to a key schedule.

4/9/20

SPN is a permutation


Proposition: Let F be a keyed function defined by an SPN in which the S-boxes are all permutations. Then regardless of the key schedule and the number of rounds, F_k is a permutation for any k.

How many rounds needed for security?

The avalanche effect.

Random permutation: When a single input bit is changed to go from x to x', each bit of f(x) should be flipped with probability $\frac{1}{2}$.

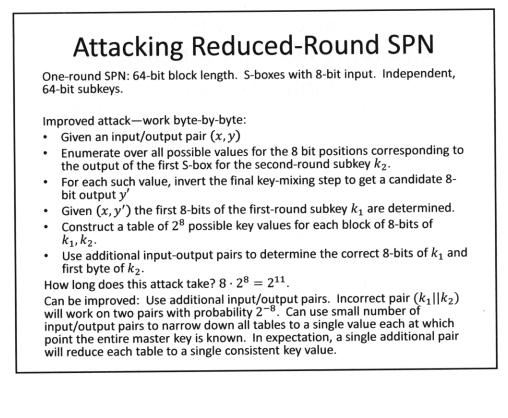
- S-boxes are designed so that changing a single bit of the input to an S-box changes at least two bits in the output of the S-box.
- The mixing permutations are designed so that the output bits of any given S-box are used as input to multiple S-boxes in the next round.

Practical SPN Usually use many more than 7 rounds. S-boxes are NOT random permutations.

Attacking Reduced-Round SPN

Trivial case: Attacking one round SPN with no final key-mixing step.

4/9/2


Attacking Reduced-Round SPN

One-round SPN: 64-bit block length. S-boxes with 8-bit input. Independent, 64-bit subkeys.

First attempt at attack:

- Given an input/output pair (x, y)
- Enumerate over all possible values for the second-round subkey k₂.
- For each such value, invert the final key-mixing step to get a candidate output y^\prime
- Given (x, y') first-round subkey k_1 is determined.
- Use additional input-output pairs to determine the correct $(k_1||k_2)$ pair.

How long does this attack take?

Lessons Learned

It should not be possible to work independently on different parts of the key.

More diffusion is required. More rounds are necessary to achieve this.

Feistel Networks An alternative approach to Block Cipher Design

4/9/2