
Introduction to Cryptology

Lecture 14

Announcements

• HW 6 is up on the course webpage, due on
Thursday, 4/5.

• No Instructor Office Hours on Monday, 4/2

• From now on, extended Instructor Office
Hours on Tuesdays:

– 3:00pm-4:30pm.

Agenda

• Last time
– Collision-Resistant Hash Functions (K/L 5.1)

– Domain Extension (Merkle-Damgard) (K/L 5.2)

– MACs from CRHF (5.3)
• Hash-and-Mac paradigm

• Please read about HMAC on your own (K/L 5.3.2)

• This time
– Sponge Construction

– New topic: Practical constructions
• Stream Ciphers (K/L 6.1)

A sponge function is built from three components:
• a state memory, S, containing b bits,
• a public, truly random permutation f
• a padding function P
The state memory is divided into two sections:
• one of size r (the bitrate) and
• the other of size c (the capacity).
These sections are denoted R and C respectively.
The padding function appends enough bits to the input string so that the
length of the padded input is a whole multiple of the bitrate, r. The padded
input can thus be broken into r-bit blocks.

Operation
The sponge function operates as follows:
• The state S is initialized to zero
• The input string is padded. This means the input p is transformed into blocks of r bits

using the padding function P.
• R is XORed with the first r-bit block of padded input
• S is replaced by f(S)
• R is XORed with the next r-bit block of padded input (if any)
• S is replaced by f(S)
…
The process is repeated until all the blocks of the padded input string are used up
("absorbed" in the sponge metaphor).
The sponge function output is now ready to be produced ("squeezed out") as follows:
• The R portion of the state memory is the first r bits of output
• If more output bits are desired, S is replaced by f(S)
• The R portion of the state memory is the next r bits of output
…
The process is repeated until the desired number of output bits are produced. If the
output length is not a multiple of r bits, it will be truncated.

Sponge

• Is there a length-extension attack on Sponge?

• Plusses and minuses of Sponge versus Merkle
Damgard.

• A Sponge-based hash known as Keccak was
selected as SHA-3. Standardized by NIST in
2015.

LFSR

• Consists of an array of 𝑛 registers 𝑠 ≔ 𝑠𝑛−1, … , 𝑠0

• Feedback loop specified by a set of 𝑛 feedback
coefficients 𝑐 ≔ 𝑐𝑛−1, … , 𝑐0.

• The size of the array is called the degree of the LFSR.

• Each register stores a single bit

• The state 𝑠𝑡 of the LFSR at any point is the set of bits
contained in the registers

• State of the LFSR is updated in a series of “clock ticks”
by shifting the values to the right and setting the new
value of the leftmost register.

LFSR

If state in registers at time 𝑡 is:

𝑠 (𝑡) ≔ 𝑠3
𝑡
, 𝑠2

𝑡
, 𝑠1

𝑡
, 𝑠 𝑡

0

Then state in registers at time 𝑡 + 1 is:

𝑠3
𝑡+1 = 𝑐 , 𝑠 (𝑡)

𝑠2
(𝑡+1) ≔ 𝑠3

𝑡
𝑠1

𝑡+1 ≔ 𝑠2
𝑡

𝑠0
𝑡+1 ≔ 𝑠1

(𝑡)

Example

Initial state: 0 0 1 1
 1 0 0 1
 1 1 0 0
 1 1 1 0
 1 1 1 1
 0 1 1 1
 0 0 1 1

• LFSR can cycle through at most 2𝑛 states before repeating
• A maximum-length LFSR cycles through all 2𝑛−1 non-zero states before repeating
• Depends only on feedback coefficients, not on initial state
• Maximum-length LFSR’s can be constructed efficiently

Reconstruction Attacks
• LFSR are always insecure. We have the following generic

attack:

• If state has 𝑛 bits, then

– First 𝑛 output bits 𝑦0, … , 𝑦𝑛−1 reveal initial state
𝑠0, … , 𝑠𝑛−1

– Can use next 𝑛 output bits 𝑦𝑛, … , 𝑦2𝑛−1 to determine
𝑐0, … , 𝑐𝑛−1 by setting up a system of 𝑛 linear equations in
𝑛 unknowns:

𝑦0 𝑦1 𝑦2

𝑦1 𝑦2 𝑦3

𝑦2 𝑦3 𝑦4

𝑦3

𝑦4

𝑦5

𝑦3 𝑦4 𝑦5 𝑦6

𝑐0

𝑐1

𝑐2

𝑐3

× =

𝑦4

𝑦5

𝑦6

𝑦7

Adding Non-Linearity

• Non-linear feedback

– New value in leftmost register is a non-linear
function of the current registers

• Non-linear combination generators

– Output is non-linear function of current registers

Hardware vs. Software

• LFSR are very efficient when implemented in
hardware but have poor performance in
software.

• Alternate designs of stream cipher for software.
• Well-known example is RC4

– Designed by Ron Rivest in 1987 (proprietary)
– Code was first publicized in 1994

• Attacks on RC4
– Various attacks are known for several years
– Extreme care must be taken when using RC4
– Or avoid RC4 altogether.

