Introduction to Cryptology

Lecture 10

Announcements

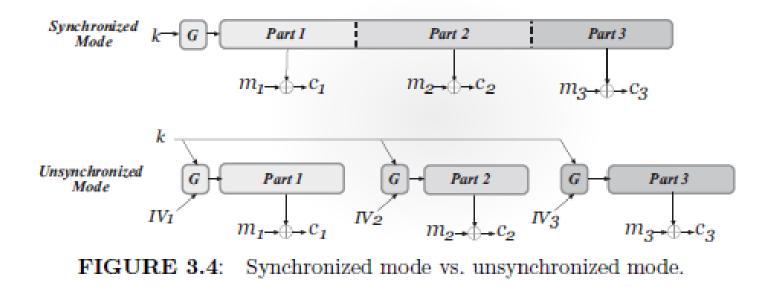
- HW4 due Tuesday, 3/6
- Extra Class Exercise and Solution on Course Webpage (on PRFs)

Agenda

- Last time:
 - CPA-secure encryption from PRF (K/L 3.5)
- This time:
 - PRP (Block Ciphers) (K/L 3.5)
 - Modes of operation (K/L 3.6)
 - New topic:
 - Message Authentication Codes (MAC) (K/L 4.2)

Block Ciphers/Pseudorandom Permutations

Definition: Pseudorandom Permutation is exactly the same as a Pseudorandom Function, except for every key k, F_k must be a permutation and it must be indistinguishable from a random permutation.


Strong Pseudorandom Permutation

Definition: Let $F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^*$ be an efficient, length-preserving, keyed permutation. We say that F is a strong pseudorandom permutation if for all ppt distinguishers D, there exists a negligible function negl such that:

$$|\Pr[D^{F_k(\cdot),F^{-1}_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1]| \le negl(n).$$

where $k \leftarrow \{0,1\}^n$ is chosen uniformly at random and f is chosen uniformly at random from the set of all permutations mapping n-bit strings to n-bit strings.

Modes of Operation—Stream Cipher

If sender and receiver are willing to maintain state, can encrypt multiple messages.

Modes of Operation—Block Cipher

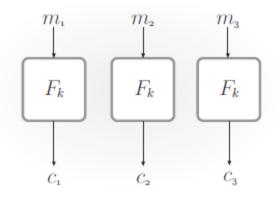


FIGURE 3.5: Electronic Code Book (ECB) mode.

FIGURE 3.6: An illustration of the dangers of using ECB mode. The middle figure is an encryption of the image on the left using ECB mode; the figure on the right is an encryption of the same image using a secure mode.

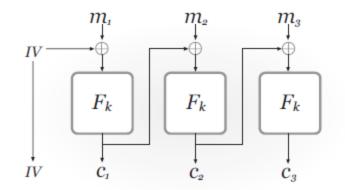


FIGURE 3.7: Cipher Block Chaining (CBC) mode.

Modes of Operation—Block Cipher

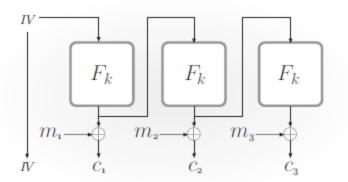


FIGURE 3.9: Output Feedback (OFB) mode.

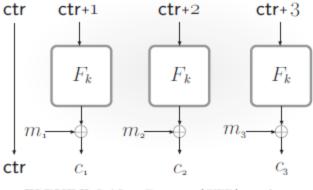


FIGURE 3.10: Counter (CTR) mode.

Message Integrity

• Secrecy vs. Integrity

• Encryption vs. Message Authentication

Message Authentication Codes

Definition: A message authentication code (MAC) consists of three probabilistic polynomial-time algorithms (Gen, Mac, Vrfy) such that:

- 1. The key-generation algorithm *Gen* takes as input the security parameter 1^n and outputs a key k with $|k| \ge n$.
- 2. The tag-generation algorithm Mac takes as input a key k and a message $m \in \{0,1\}^*$, and outputs a tag t. $t \leftarrow Mac_k(m)$.
- 3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs a bit bwith b = 1 meaning valid and b = 0 meaning invalid. $b \coloneqq Vrfy_k(m, t)$.

It is required that for every n, every key k output by $Gen(1^n)$, and every $m \in \{0,1\}^*$, it holds that $Vrfy_k(m, Mac_k(m)) = 1$.

Security of MACs

The message authentication experiment $MACforge_{A,\Pi}(n)$:

- 1. A key k is generated by running $Gen(1^n)$.
- 2. The adversary A is given input 1^n and oracle access to $Mac_k(\cdot)$. The adversary eventually outputs (m, t). Let Q denote the set of all queries that A asked its oracle.
- 3. A succeeds if and only if (1) $Vrfy_k(m,t) = 1$ and (2) $m \notin Q$. In that case, the output of the experiment is defined to be 1.

Security of MACs

Definition: A message authentication code $\Pi = (Gen, Mac, Vrfy)$ is existentially unforgeable under an adaptive chosen message attack if for all probabilistic polynomial-time adversaries A, there is a negligible function neg such that:

 $\Pr[MACforge_{A,\Pi}(n) = 1] \le neg(n).$