Introduction to Cryptology ENEE459E/CMSC498R: Homework 10

Due by beginning of class on 5/10/2018.

1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_A with Alice and a different key k_B with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?

2. Consider the following key-exchange protocol:

Common input: The security parameter 1^n .

- (a) Alice runs $\mathcal{G}(1^n)$ to obtain (G, q, g).
- (b) Alice chooses $x_1, x_2 \leftarrow Z_q$ and sends $\alpha = x_1 + x_2$ to Bob.
- (c) Bob chooses $x_3 \leftarrow Z_q$ and sends $h_2 = g^{x_3}$ to Alice.
- (d) Alice sends $h_3 = g^{x_2 \cdot x_3}$ to Bob.
- (e) Alice outputs $h_2^{x_1}$. Bob outputs $(g^{\alpha})^{x_3} \cdot (h_3)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).

- 3. Show that any 2-round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
- 4. Consider the following variant of El Gamal encryption. Let p=2q+1, let G be the group of squares modulo p, and let g be a generator of G. The private key is (G,g,q,x) and the public key is G,g,q,h, where $h=g^x$ and $x\in Z_q$ is chosen uniformly. To encrypt a message $m\in Z_q$, choose a uniform $r\in Z_q$, compute $c_1:=g^r mod p$ and $c_2:=h^r+m mod p$, and let the ciphertext be $\langle c_1,c_2\rangle$. Is this scheme CPA-secure? Prove your answer.
- 5. Consider the following modified version of padded RSA encryption: Assume messages to be encrypted have length exactly ||N||/2. To encrypt, first compute $\hat{m}:=0x00||r||0x00||m$ where r is a uniform string of length ||N||/2-16. Then compute the ciphertext $c:=[\hat{m}^e mod N]$. When decrypting a ciphertext c, the receiver computes $\hat{m}:=[c^d mod N]$ and returns an error of \hat{m} does not consist of 0x00 followed by ||N||/2-16 arbitrary bits followed by 0x00. Show that this scheme is not CCA-secure. Why is it easier to construct a chosen-ciphertext attack on this scheme than on PKCS #1 v1.5?
- 6. In Section 12.4.1 we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.