Introduction to Cryptology ENEE459E/CMSC498R: Homework 10

Due by beginning of class on 5/10/2018.

1. Describe in detail a man-in-the-middle attack on the Diffie-Hellman key-exchange protocol whereby the adversary ends up sharing a key k_{A} with Alice and a different key k_{B} with Bob, and Alice and Bob cannot detect that anything has gone wrong.

What happens if Alice and Bob try to detect the presence of a man-in-the-middle adversary by sending each other (encrypted) questions that only the other party would know how to answer?
2. Consider the following key-exchange protocol:

Common input: The security parameter 1^{n}.
(a) Alice runs $\mathcal{G}\left(1^{n}\right)$ to obtain (G, q, g).
(b) Alice chooses $x_{1}, x_{2} \leftarrow Z_{q}$ and sends $\alpha=x_{1}+x_{2}$ to Bob.
(c) Bob chooses $x_{3} \leftarrow Z_{q}$ and sends $h_{2}=g^{x_{3}}$ to Alice.
(d) Alice sends $h_{3}=g^{x_{2} \cdot x_{3}}$ to Bob.
(e) Alice outputs $h_{2}^{x_{1}}$. Bob outputs $\left(g^{\alpha}\right)^{x_{3}} \cdot\left(h_{3}\right)^{-1}$.

Show that Alice and Bob output the same key. Analyze the security of the scheme (i.e., either prove its security or show a concrete attack).
3. Show that any 2 -round key-exchange protocol (that is, where each party sends a single message) can be converted into a CPA-secure public-key encryption scheme.
4. Consider the following variant of El Gamal encryption. Let $p=2 q+1$, let G be the group of squares modulo p, and let g be a generator of G. The private key is (G, g, q, x) and the public key is $G, g, q, h)$, where $h=g^{x}$ and $x \in Z_{q}$ is chosen uniformly. To encrypt a message $m \in Z_{q}$, choose a uniform $r \in Z_{q}$, compute $c_{1}:=g^{r} \bmod p$ and $c_{2}:=h^{r}+\bmod p$, and let the ciphertext be $\left\langle c_{1}, c_{2}\right\rangle$. Is this scheme CPAsecure? Prove your answer.
5. Consider the following modified version of padded RSA encryption: Assume messages to be encrypted have length exactly $\|N\| / 2$. To encrypt, first compute $\hat{m}:=0 x 00\|r\| 0 x 00 \| m$ where r is a uniform string of length $\|N\| / 2-16$. Then compute the ciphertext $c:=\left[\hat{m}^{e} \bmod N\right]$. When decrypting a ciphertext c, the receiver computes $\hat{m}:=\left[c^{d} \bmod N\right]$ and returns an error of \hat{m} does not consist of $0 x 00$ followed by $\|N\| / 2-16$ arbitrary bits followed by $0 x 00$. Show that this scheme is not CCA-secure. Why is it easier to construct a chosen-ciphertext attack on this scheme than on PKCS \#1 v1.5?
6. In Section 12.4.1 we showed an attack on the plain RSA signature scheme in which an attacker forges a signature on an arbitrary message using two signing queries. Show how an attacker can forge a signature on an arbitrary message using a single signing query.

