Indistinguishable Encryptions in the Presence of an Eavesdropper Class Exercise—2/22/18

Assume *G* is a PRG with input length *n* and output length n + 1. Do the following encryption schemes Π have indistinguishable encryptions in the presence of an eavesdropper? If yes, formally prove that if *G* is a PRG then the scheme is secure. If not, present a ppt adversary *A* and show that $\Pr\left[\operatorname{PrivK^{eav}}_{A,\Pi}(n) = 1\right] \ge 1/2 + \rho(n)$ for some non-negligible $\rho()$.

1. Π is defined as follows: *Gen* outputs a random key k of length n. To encrypt a message $m = m_1 || m_2$, where m_1, m_2 each have length n + 1, output $c := (c_1 || c_2) := G(k) \oplus m_1 || G(k) \oplus m_2$. To decrypt output $m_1 || m_2 = G(k) \oplus c_1 || G(k) \oplus c_2$.

2. Π is defined as follows: *Gen* outputs a random key k of length n. To encrypt a message m, where m has length n + 1, output $c := G(k) \oplus m || 0^n$. To decrypt, output the first n bits of $c \oplus (G(k) || 0^n)$.