
Introduction to Cryptology 

Lecture 20 



Announcements 

• HW7 due Tuesday, 4/25 

• Extra Instructor Office Hours 

– Thursday, 4/20 from 10am-11am 



Agenda 

• More Number Theory! 



Modular Exponentiation 

We can obtain an efficient algorithm via “repeated squaring.” 
 
ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where 
𝑚 = 𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚. 
 Set 𝑠 ≔ 𝑎  
 Set 𝑡𝑒𝑚𝑝 ≔ 1 
 For 𝑖 = 0 to 𝑛 − 1 
  If 𝑚𝑖 = 1 
   Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁 
  Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁   
 return 𝑡𝑒𝑚𝑝; 
 
This is clearly efficient since the loop runs for 𝑛 iterations, where 
𝑛 = log2𝑚. 
 



Modular Exponentiation 

Why does it work? 

𝑚 =  𝑚𝑖 ⋅ 2
𝑖

𝑛−1

𝑖=0

 

 

Consider 𝑎𝑚 = 𝑎 𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 =  𝑎𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 . 
 
In the efficient algorithm: 

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the 

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2 ). 

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value. 

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step. 

 



Euclidean Algorithm 

Theorem:  Let 𝑎, 𝑝 be positive integers.  Then there 
exist integers 𝑋, 𝑌 such that 𝑋𝑎 + 𝑌𝑏 = gcd (𝑎, 𝑝). 
 
Given 𝑎, 𝑝, the Euclidean algorithm can be used to 
compute gcd (𝑎, 𝑝) in polynomial time.  The 
extended Euclidean algorithm can be used to 
compute 𝑋, 𝑌 in polynomial time. 
 
***We will see the extended Euclidean algorithm 
next class*** 



Extended Euclidean Algorithm 
Example #1 

Find:  𝑋, 𝑌 such that 9𝑋 +  23𝑌 =  gcd (9,23)  =  1. 
23 = 2 ⋅ 9 + 5 
9 = 1 ⋅ 5 + 4 
5 = 1 ⋅ 4 + 1 
4 = 4 ⋅ 1 + 0 

 
1 = 5 − 1 ⋅ 4 

1 = 5 − 1 ⋅ 9 − 1 ⋅ 5  

1 = 23 − 2 ⋅ 9 − 9 − 23 − 2 ⋅ 9  

1 = 2 ⋅ 23 − 5 ⋅ 9 
−5 = 18 𝑚𝑜𝑑 23 is the multiplicative inverse of 9 𝑚𝑜𝑑 23. 



Extended Euclidean Algorithm 
Example #2 

Find:  𝑋, 𝑌 such that 5𝑋 + 33𝑌 =  gcd (5,33)  =  1. 
33 = 6 ⋅ 5 + 3 
5 = 1 ⋅ 3 + 2 
3 = 1 ⋅ 2 + 1 
2 = 2 ⋅ 1 + 0 

 
1 = 3 − 1 ⋅ 2 
1 = 3 − 5 − 3  

1 = 33 − 6 ⋅ 5 − 5 − 33 − 6 ⋅ 5  

1 = 2 ⋅ 33 − 13 ⋅ 5 
−13 = 20 𝑚𝑜𝑑 33 is the multiplicative inverse of 5 𝑚𝑜𝑑 33. 
 



Time Complexity of Euclidean 
Algorithm 

When finding gcd (𝑎, 𝑏), the “𝑏” value gets 
halved every two rounds. 

Why? 

 

Time complexity:  2log (𝑏). 

This is polynomial in the length of the input. 

Why? 



Chinese Remainder Theorem 



Going from 𝑎, 𝑏 ∈  𝑍𝑝 × 𝑍𝑞   

to 𝑥 ∈  𝑍𝑁 
Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that 

𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

Recall since gcd 𝑝, 𝑞 = 1 we can write 
𝑋𝑝 + 𝑌𝑞 = 1 

Note that  
𝑋𝑝 ≡ 0 𝑚𝑜𝑑 𝑝 
𝑋𝑝 ≡ 1 𝑚𝑜𝑑 𝑞 

Whereas 
𝑌𝑞 ≡ 1 𝑚𝑜𝑑 𝑝 
𝑌𝑞 ≡ 0 𝑚𝑜𝑑 𝑝 



Going from 𝑎, 𝑏 ∈  𝑍𝑝 × 𝑍𝑞   

to 𝑥 ∈  𝑍𝑁 

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that 
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

Claim: 
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑎 𝑚𝑜𝑑 𝑝 
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑏 𝑚𝑜𝑑 𝑞 

 

Therefore, 𝑥 ≡ 𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 𝑚𝑜𝑑 𝑁 

 


