Introduction to Cryptology

Lecture 20

Announcements

- HW7 due Tuesday, 4/25
- Extra Instructor Office Hours

 Thursday, 4/20 from 10am-11am

Agenda

• More Number Theory!

Modular Exponentiation

We can obtain an efficient algorithm via "repeated squaring."

```
ModExp(a, m, N) //computes a^m \mod N, where

m = m_{n-1}m_{n-2} \cdots m_1m_0 are the bits of m.

Set s \coloneqq a

Set temp \coloneqq 1

For i = 0 to n - 1

If m_i = 1

Set temp \coloneqq (temp \cdot s) \mod N

Set s \coloneqq s^2 \mod N

return temp;
```

This is clearly efficient since the loop runs for n iterations, where $n = \log_2 m$.

Modular Exponentiation

Why does it work?

$$m = \sum_{i=0}^{n-1} m_i \cdot 2^i$$

Consider
$$a^m = a^{\sum_{i=0}^{n-1} m_i \cdot 2^i} = \prod_{i=0}^{n-1} a^{m_i \cdot 2^i}$$
.

In the efficient algorithm:

s values are precomputations of a^{2^i} , for i = 0 to n - 1 (this is the "repeated squaring" part since $a^{2^i} = (a^{2^{i-1}})^2$). If $m_i = 1$, we multiply in the corresponding s-value. If $m_i = 0$, then $a^{m_i \cdot 2^i} = a^0 = 1$ and so we skip the multiplication step.

Euclidean Algorithm

Theorem: Let a, p be positive integers. Then there exist integers X, Y such that Xa + Yb = gcd(a, p).

Given a, p, the Euclidean algorithm can be used to compute gcd(a, p) in polynomial time. The extended Euclidean algorithm can be used to compute X, Y in polynomial time.

We will see the extended Euclidean algorithm next class

Extended Euclidean Algorithm Example #1

Find: X, Y such that 9X + 23Y = gcd(9,23) = 1. $23 = 2 \cdot 9 + 5$ $9 = 1 \cdot 5 + 4$ $5 = 1 \cdot 4 + 1$ $4 = 4 \cdot 1 + 0$

$$1 = 5 - 1 \cdot 4$$

$$1 = 5 - 1 \cdot (9 - 1 \cdot 5)$$

$$1 = (23 - 2 \cdot 9) - (9 - (23 - 2 \cdot 9))$$

$$1 = 2 \cdot 23 - 5 \cdot 9$$

 $-5 = 18 \mod 23$ is the multiplicative inverse of $9 \mod 23$.

Extended Euclidean Algorithm Example #2

Find: X, Y such that 5X + 33Y = gcd(5,33) = 1. $33 = 6 \cdot 5 + 3$ $5 = 1 \cdot 3 + 2$ $3 = 1 \cdot 2 + 1$ $2 = 2 \cdot 1 + 0$ $1 = 3 - 1 \cdot 2$ 1 = 3 - (5 - 3) $1 = (33 - 6 \cdot 5) - (5 - (33 - 6 \cdot 5))$ $1 = 2 \cdot 33 - 13 \cdot 5$

 $-13 = 20 \mod 33$ is the multiplicative inverse of $5 \mod 33$.

Time Complexity of Euclidean Algorithm

When finding gcd(*a*, *b*), the "*b*" value gets halved every two rounds.

Why?

Time complexity: $2\log(b)$. This is polynomial in the length of the input. Why?

Chinese Remainder Theorem

Going from $(a, b) \in Z_p \times Z_q$ to $x \in Z_N$

Find the unique *x* mod *N* such that

 $x \equiv a \mod p$ $x \equiv b \mod q$ Recall since gcd(p,q) = 1 we can write Xp + Yq = 1

Note that

Хp	≡	0	mod	p
Xp	≡	1	mod	q

Whereas

$$\begin{array}{l} Yq \equiv 1 \ mod \ p \\ Yq \equiv 0 \ mod \ p \end{array}$$

Going from $(a, b) \in Z_p \times Z_q$ to $x \in Z_N$

Find the unique *x* mod *N* such that

$$x \equiv a \bmod p$$
$$x \equiv b \bmod q$$

Claim:

$$b \cdot Xp + a \cdot Yq \equiv a \mod p$$
$$b \cdot Xp + a \cdot Yq \equiv b \mod q$$

Therefore, $x \equiv b \cdot Xp + a \cdot Yq \mod N$