
Introduction to Cryptology

Lecture 20

Announcements

• HW7 due Tuesday, 4/25

• Extra Instructor Office Hours

– Thursday, 4/20 from 10am-11am

Agenda

• More Number Theory!

Modular Exponentiation

We can obtain an efficient algorithm via “repeated squaring.”

ModExp(𝑎,𝑚,𝑁) //computes 𝑎𝑚 𝑚𝑜𝑑 𝑁, where
𝑚 = 𝑚𝑛−1𝑚𝑛−2⋯𝑚1𝑚0 are the bits of 𝑚.
 Set 𝑠 ≔ 𝑎
 Set 𝑡𝑒𝑚𝑝 ≔ 1
 For 𝑖 = 0 to 𝑛 − 1
 If 𝑚𝑖 = 1
 Set 𝑡𝑒𝑚𝑝 ≔ 𝑡𝑒𝑚𝑝 ⋅ 𝑠 𝑚𝑜𝑑 𝑁
 Set 𝑠 ≔ 𝑠2 𝑚𝑜𝑑 𝑁
 return 𝑡𝑒𝑚𝑝;

This is clearly efficient since the loop runs for 𝑛 iterations, where
𝑛 = log2𝑚.

Modular Exponentiation

Why does it work?

𝑚 = 𝑚𝑖 ⋅ 2
𝑖

𝑛−1

𝑖=0

Consider 𝑎𝑚 = 𝑎 𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 = 𝑎𝑚𝑖⋅2
𝑖𝑛−1

𝑖=0 .

In the efficient algorithm:

𝑠 values are precomputations of 𝑎2
𝑖
, for 𝑖 = 0 𝑡𝑜 𝑛 − 1 (this is the

“repeated squaring” part since 𝑎2
𝑖
= (𝑎2

𝑖−1
)2).

If 𝑚𝑖 = 1, we multiply in the corresponding 𝑠-value.

If 𝑚𝑖 = 0, then 𝑎𝑚𝑖⋅2
𝑖
= 𝑎0 = 1 and so we skip the multiplication step.

Euclidean Algorithm

Theorem: Let 𝑎, 𝑝 be positive integers. Then there
exist integers 𝑋, 𝑌 such that 𝑋𝑎 + 𝑌𝑏 = gcd (𝑎, 𝑝).

Given 𝑎, 𝑝, the Euclidean algorithm can be used to
compute gcd (𝑎, 𝑝) in polynomial time. The
extended Euclidean algorithm can be used to
compute 𝑋, 𝑌 in polynomial time.

***We will see the extended Euclidean algorithm
next class***

Extended Euclidean Algorithm
Example #1

Find: 𝑋, 𝑌 such that 9𝑋 + 23𝑌 = gcd (9,23) = 1.
23 = 2 ⋅ 9 + 5
9 = 1 ⋅ 5 + 4
5 = 1 ⋅ 4 + 1
4 = 4 ⋅ 1 + 0

1 = 5 − 1 ⋅ 4

1 = 5 − 1 ⋅ 9 − 1 ⋅ 5

1 = 23 − 2 ⋅ 9 − 9 − 23 − 2 ⋅ 9

1 = 2 ⋅ 23 − 5 ⋅ 9
−5 = 18 𝑚𝑜𝑑 23 is the multiplicative inverse of 9 𝑚𝑜𝑑 23.

Extended Euclidean Algorithm
Example #2

Find: 𝑋, 𝑌 such that 5𝑋 + 33𝑌 = gcd (5,33) = 1.
33 = 6 ⋅ 5 + 3
5 = 1 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1
2 = 2 ⋅ 1 + 0

1 = 3 − 1 ⋅ 2
1 = 3 − 5 − 3

1 = 33 − 6 ⋅ 5 − 5 − 33 − 6 ⋅ 5

1 = 2 ⋅ 33 − 13 ⋅ 5
−13 = 20 𝑚𝑜𝑑 33 is the multiplicative inverse of 5 𝑚𝑜𝑑 33.

Time Complexity of Euclidean
Algorithm

When finding gcd (𝑎, 𝑏), the “𝑏” value gets
halved every two rounds.

Why?

Time complexity: 2log (𝑏).

This is polynomial in the length of the input.

Why?

Chinese Remainder Theorem

Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞

to 𝑥 ∈ 𝑍𝑁
Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that

𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Recall since gcd 𝑝, 𝑞 = 1 we can write
𝑋𝑝 + 𝑌𝑞 = 1

Note that
𝑋𝑝 ≡ 0 𝑚𝑜𝑑 𝑝
𝑋𝑝 ≡ 1 𝑚𝑜𝑑 𝑞

Whereas
𝑌𝑞 ≡ 1 𝑚𝑜𝑑 𝑝
𝑌𝑞 ≡ 0 𝑚𝑜𝑑 𝑝

Going from 𝑎, 𝑏 ∈ 𝑍𝑝 × 𝑍𝑞

to 𝑥 ∈ 𝑍𝑁

Find the unique 𝑥 𝑚𝑜𝑑 𝑁 such that
𝑥 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Claim:
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑎 𝑚𝑜𝑑 𝑝
𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 ≡ 𝑏 𝑚𝑜𝑑 𝑞

Therefore, 𝑥 ≡ 𝑏 ⋅ 𝑋𝑝 + 𝑎 ⋅ 𝑌𝑞 𝑚𝑜𝑑 𝑁

