Introduction to Cryptology—ENEE 459E/CMSC 498R Class Exercise 2/2/17

1. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M and every $c_0, c_1 \in C$ we have $Pr[C = c_0] = Pr[C = c_1]$.

Consider the following scheme
Message space is a single letter
$$M = \frac{1}{2}A, B, C, \dots, \frac{3}{2}$$

Gen()-choose a shift $s \in \frac{1}{2}(0, \dots, 253)$
-choose r to be the letter A with prob $\frac{3}{4}$, B with prob $\frac{1}{4}$
Enc(sllr, m) - apply shift cipher to m w/ shift s yielding C
output cllr.
Dec(sllr, cllr) - decrypt shift cipher w/ C, s yielding m
It can be observed that above achieves perfect secrecy.
towern, ciphertexts ending in A are more likely than ciphertexts ending
with

2. Prove or refute: An encryption scheme with message space M is perfectly secret if and only if for every probability distribution over M, every $m, m' \in M$ and every $c \in C$ we have $Pr[M = m \mid C = c] = Pr[M = m' \mid C = c].$

-

Assume an encryption scheme is perfectly secret
and for each dist over
$$\mathcal{M}$$
, every \mathcal{M} , $m' \in \mathcal{M}$, $c \in \mathcal{C}$
we have $\Pr[\mathcal{M}=m|C=c]=\Pr[\mathcal{M}=m'|C=c]$.
Let's choose a particular distribution over \mathcal{M} that
sets $\Pr[\mathcal{M}=m] > \Pr[\mathcal{M}=m']$.
Now by $Def 1$ of perfect secrecy
 $\Pr[\mathcal{M}=m|C=c]=\Pr[\mathcal{M}=m]=\Pr[\mathcal{M}=m'|C=c]=\Pr[\mathcal{M}=m']$.
But this implies $\Pr[\mathcal{M}=m]=\Pr[\mathcal{M}=m']$, which is a
contradiction.