ENEE 459E/CMSC 498R: Introduction to Cryptology RSA Cryptanalysis

5/2/17

1. Partially Known Message.

Coppersmith's Theorem: Let $p(x)$ be a polynomial of degree e. Then in time $\operatorname{poly}(\log (N), e)$ one can find all m such that $p(m)=0 \bmod N$ and $m \leq N^{1 / e}$.

Assume message is $m=m_{1} \| m_{2}$, where m_{1} is known, but m_{2} (which consists of k bits) is not known. Using Coppersmith's Theorem, show how to recover m given the ciphertext c, assuming k is not too large.

Hint: Note that m can be expressed as $m:=2^{k} m_{1}+m_{2}$.

2. Related Messages.

Euclidean Algorithm for Polynomials: Let $f(x)$ and $g(x)$ be two polynomials over $Z^{*}{ }_{N}$. Then a slightly modified version of the Euclidean GCD Algorithm can be used to determine the greatest common divisor of f, g as polynomials over $Z^{*}{ }_{N}$.

Assume the sender encrypts both m and $m+\delta$, for known δ, unknown m giving two ciphertexts c_{1} and c_{2}. Use the Euclidean algorithm for polynomials to show how to recover m given knowledge of δ and given the two ciphertexts c_{1}, c_{2}.

ENEE 459E/CMSC 498R: Introduction to Cryptology RSA Cryptanalysis

3. Sending the same message to multiple receivers:

The following is a slightly extended version of Chinese Remainder Theorem than the one we saw in class for the case where there are 3 moduli.

Chinese Remainder Theorem. Let N_{1}, N_{2}, N_{3} be pairwise relatively prime. Then for every c_{1}, c_{2}, c_{3}, there exists a unique non-negative integer \hat{c} such that:

$$
\begin{aligned}
& \hat{c}=c_{1} \bmod N_{1} \\
& \hat{c}=c_{2} \bmod N_{2} \\
& \hat{c}=c_{3} \bmod N_{3}
\end{aligned}
$$

Assume there are three receivers with public keys:
$p k_{1}=\left\langle N_{1}, 3\right\rangle, p k_{2}=\left\langle N_{2}, 3\right\rangle, p k_{3}=\left\langle N_{3}, 3\right\rangle$.
A sender sends the same encrypted message m to all three receivers so an eavesdropper sees:
$c_{1}=m^{3} \bmod N_{1}, c_{2}=m^{3} \bmod N_{2}, c_{3}=m^{3} \bmod N_{3}$
Show how to use the Chinese Remainder Theorem to recover m.

