ENEE 459E/CMSC 498R: Introduction to Cryptology RSA Cryptanalysis 5/2/17

1. Partially Known Message.

Coppersmith's Theorem: Let p(x) be a polynomial of degree e. Then in time poly(log(N), e) one can find all m such that $p(m) = 0 \mod N$ and $m \le N^{1/e}$.

Assume message is $m = m_1 || m_2$, where m_1 is known, but m_2 (which consists of k bits) is not known. Using Coppersmith's Theorem, show how to recover m given the ciphertext c, assuming k is not too large.

Hint: Note that *m* can be expressed as $m \coloneqq 2^k m_1 + m_2$.

2. Related Messages.

Euclidean Algorithm for Polynomials: Let f(x) and g(x) be two polynomials over Z_N^* . Then a slightly modified version of the Euclidean GCD Algorithm can be used to determine the greatest common divisor of f, g as polynomials over Z_N^* .

Assume the sender encrypts both m and $m + \delta$, for known δ , unknown m giving two ciphertexts c_1 and c_2 . Use the Euclidean algorithm for polynomials to show how to recover m given knowledge of δ and given the two ciphertexts c_1 , c_2 .

ENEE 459E/CMSC 498R: Introduction to Cryptology RSA Cryptanalysis

3. Sending the same message to multiple receivers:

The following is a slightly extended version of Chinese Remainder Theorem than the one we saw in class for the case where there are 3 moduli.

Chinese Remainder Theorem. Let N_1 , N_2 , N_3 be pairwise relatively prime. Then for every c_1 , c_2 , c_3 , there exists a unique non-negative integer \hat{c} such that:

$$\hat{c} = c_1 mod N_1 \hat{c} = c_2 mod N_2 \hat{c} = c_3 mod N_3.$$

Assume there are three receivers with public keys:

 $pk_1 = \langle N_1, 3 \rangle, pk_2 = \langle N_2, 3 \rangle, pk_3 = \langle N_3, 3 \rangle.$

A sender sends the same encrypted message m to all three receivers so an eavesdropper sees:

 $c_1 = m^3 \mod N_1, c_2 = m^3 \mod N_2, c_3 = m^3 \mod N_3$

Show how to use the Chinese Remainder Theorem to recover m.