Introduction to Cryptology

Lecture 24

Announcements

- HW8 due today
- HW9 up on course webpage. Due Tuesday, 5/9.
- Final Review Sheet up on course webpage
- Reminder: Extra Credit due Tuesday, 5/9

Agenda

- Last time:
- Hard problems
- Elliptic Curve Groups
- This time:
- Diffie-Hellman Key Exchange (K/L 10.3)
- El Gamal Public Key Encryption (K/L 11.4)
- RSA Public Key Encryption and Weaknesses (K/L 11.5)

Key Agreement

The key-exchange experiment $K E_{A, \Pi}^{e a v}(n)$:

1. Two parties holding 1^{n} execute protocol Π. This results in a transcript trans containing all the messages sent by the parties, and a key k output by each of the parties.
2. A uniform bit $b \in\{0,1\}$ is chosen. If $b=0$ set $\hat{k}:=k$, and if $b=1$ then choose $\hat{k} \in\{0,1\}^{n}$ uniformly at random.
3. A is given trans and \hat{k}, and outputs a bit b^{\prime}.
4. The output of the experiment is defined to be 1 if $b^{\prime}=b$ and 0 otherwise.

Definition: A key-exchange protocol Π is secure in the presence of an eavesdropper if for all ppt adversaries A there is a negligible function neg such that

$$
\operatorname{Pr}\left[K E_{A, \Pi}^{e a v}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg}(n) .
$$

Discussion of Definition

- Why is this the "right" definition?
- Why does the adversary get to see \hat{k} ?

Diffie-Hellman Key Exchange

FIGURE 10.2: The Diffie-Hellman key-exchange protocol.

Security Analysis

Theorem: If the DDH problem is hard relative to \boldsymbol{G}, then the Diffie-Hellman key-exchange protocol Π is secure in the presence of an eavesdropper.

Recall DDH problem

We say that the DDH problem is hard relative to \boldsymbol{G} if for all ppt algorithms A, there exists a negligible function neg such that

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=1\right] \\
& \quad \quad-\operatorname{Pr}\left[A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right] \mid \\
& \quad \leq \operatorname{neg}(n) .
\end{aligned}
$$

Security Reduction

--Show reduction from DH Key Exchange to the DDH problem.

Public Key Encryption

Definition: A public key encryption scheme is a triple of ppt algorithms (Gen, Enc, Dec) such that:

1. The key generation algorithm Gen takes as input the security parameter 1^{n} and outputs a pair of keys $(p k, s k)$. We refer to the first of these as the public key and the second as the private key. We assume for convenience that $p k$ and $s k$ each has length at least n, and that n can be determined from $p k, s k$.
2. The encryption algorithm Enc takes as input a public key $p k$ and a message m from some message space. It outputs a ciphertext c, and we write this as $c \leftarrow E n c_{p k}(m)$.
3. The deterministic decryption algorithm Dec takes as input a private key $s k$ and a ciphertext c, and outputs a message m or a special symbol \perp denoting failure. We write this as $m:=D e c_{s k}(c)$.

Correctness: It is required that, except possibly with negligible probability over $(p k, s k)$ output by $\operatorname{Gen}\left(1^{n}\right)$, we have $\operatorname{Dec}_{s k}\left(E n c_{p k}(m)\right)=m$ for any legal message m.

CPA-Security

The CPA experiment PubK ${ }_{A, \Pi}{ }^{c p a}(n)$:

1. $\operatorname{Gen}\left(1^{n}\right)$ is run to obtain keys $(p k, s k)$.
2. Adversary A is given $p k$, and outputs a pair of equal-length messages m_{0}, m_{1} in the message space.
3. A uniform bit $b \in\{0,1\}$ is chosen, and then a challenge ciphertext $c \leftarrow E n c_{p k}\left(m_{b}\right)$ is computed and given to A.
4. A outputs a bit b^{\prime}. The output of the experiment is 1 if $b^{\prime}=b$, and 0 otherwise.

Definition: A public-key encryption scheme $\Pi=$ (Gen, Enc, Dec) is CPA-secure if for all ppt adversaries A there is a negligible function neg such that

$$
\operatorname{Pr}\left[\operatorname{PubK}_{A, \Pi}^{c p a}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg}(n) .
$$

Discussion

- Discuss how in the public key setting security in the presence of an eavesdropper and CPA security are equivalent (since anyone can encrypt using the public key).
- Discuss how CPA-secure encryption cannot be deterministic!!
- Why not?

El Gamal Encryption

--Show how we can derive El Gamal PKE from Diffie-Hellman Key Exchange

Important Property

Lemma: Let G be a finite group, and let $m \in G$ be arbirary. Then choosing uniform $k \in G$ and setting $k^{\prime}:=k \cdot m$ gives the same distribution for k^{\prime} as choosing uniform $k^{\prime} \in G$. Put differently, for any $\hat{g} \in G$ we have

$$
\operatorname{Pr}[k \cdot m=\hat{g}]=1 /|G| .
$$

El Gamal Encryption Scheme

CONSTRUCTION 11.16

Let \mathcal{G} be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n} run $\mathcal{G}\left(1^{n}\right)$ to obtain (\mathbb{G}, q, g). Then choose a uniform $x \leftarrow \mathbb{Z}_{q}$ and compute $h:=g^{x}$. The public key is $\langle\mathbb{G}, q, g, h\rangle$ and the private key is $\langle\mathbb{G}, q, g, x\rangle$. The message space is \mathbb{G}.
- Enc: on input a public key $p k=\langle\mathbb{G}, q, g, h\rangle$ and a message $m \in \mathbb{G}$, choose a uniform $y \leftarrow \mathbb{Z}_{q}$ and output the ciphertext

$$
\left\langle g^{y}, h^{y} \cdot m\right\rangle .
$$

- Dec: on input a private key $s k=\langle\mathbb{G}, q, g, x\rangle$ and a ciphertext $\left\langle c_{1}, c_{2}\right\rangle$, output

$$
\hat{m}:=c_{2} / c_{1}^{x} .
$$

The El Gamal encryption scheme.

El Gamal Example

--If you have time you can do an example.
--Let the group G be the group of quadratic residues over $Z_{_} p$, where p is a strong prime (i.e. $p=2 q+1$ for prime q).

Security Analysis

Theorem: If the DDH problem is hard relative to G, then the El Gamal encryption scheme is CPAsecure.
--you can skip the proof since it's essentially the same as Diffie-Hellman Key Exchange.

RSA Encryption

CONSTRUCTION 11.25

Let GenRSA be as in the text. Define a public-key encryption scheme as follows:

- Gen: on input 1^{n} run $\operatorname{GenRSA}\left(1^{n}\right)$ to obtain N, e, and d. The public key is $\langle N, e\rangle$ and the private key is $\langle N, d\rangle$.
- Enc: on input a public key $p k=\langle N, e\rangle$ and a message $m \in \mathbb{Z}_{N}^{*}$, compute the ciphertext

$$
c:=\left[m^{e} \bmod N\right] .
$$

- Dec: on input a private key $s k=\langle N, d\rangle$ and a ciphertext $c \in \mathbb{Z}_{N}^{*}$, compute the message

$$
m:=\left[c^{d} \bmod N\right] .
$$

The plain RSA encryption scheme.

RSA Example

$$
\begin{gathered}
p=3, q=7, N=21 \\
\phi(N)=12 \\
e=5 \\
d=5
\end{gathered}
$$

$E n c_{(21,5)}(11)=4^{5} \bmod 21=16 \bmod 21$
$\operatorname{Dec}_{21,5}(16)=16^{5} \bmod 21=4^{5} \cdot 4^{5} \bmod 21$ $=16 \cdot 16 \bmod 21=4$

Is Plain-RSA Secure?

- It is deterministic so cannot be secure!

Additional Attacks

Additional Attacks

Encrypting short messages using small e :

- When $m<N^{1 / e}$, raising m to the e-th power modulo N involves no modular reduction.
- Can compute $m=c^{1 / e}$ over the integers.

