Introduction to Cryptology

Lecture 22

Announcements

- HW7 due today
- HW8 up on course webpage. Due Tuesday, 5/2.

Agenda

- Last time:
 - Groups Z_N^* , for general N
 - Cyclic Groups $\langle g \rangle$
- This time:
 - Cyclic Groups, prime order groups
 - Hard problems
 - Elliptic Curve Groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$\langle g\rangle = \{g^0, g^1, \dots, g^{m-1}\}$$

 $\langle g \rangle$ always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the above list.

Thus $\langle g \rangle$ may be a subgroup of order smaller than m.

If $\langle g \rangle = G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider
$$Z^*_{13}$$
:

2 is a generator of Z^*_{13} :

2 ⁰	1
2 ¹	2
2 ²	4
2 ³	8
24	$16 \rightarrow 3$
2 ⁵	6
2 ⁶	12
27	$24 \rightarrow 11$
2 ⁸	$22 \rightarrow 9$
2 ⁹	$18 \rightarrow 5$
2 ¹⁰	10
211	$20 \rightarrow 7$
212	$14 \rightarrow 1$

3 is not a generator of Z^*_{13} :

30	1
	1
31	3
3 ²	9
3 ³	$27 \rightarrow 1$
34	3
35	9
36	$27 \rightarrow 1$
37	3
3 ⁸	9
3 ⁹	$27 \rightarrow 1$
310	3
311	9
312	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^i = 1$.

Ex: Consider Z_{13}^* . The order of 2 is 12. The order of 3 is 3.

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^x = g^{x \mod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^x = g^y$ iff $x \equiv y \mod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^m = 1 = g^0$.
- By Proposition 1, we have that $g^m = g^{m \mod i} = g^0$.
- By the \leftarrow direction of Proposition 2, we have that $0 \equiv m \mod i$.
- By definition of modulus, this means that i|m.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?

Theorem: If p is prime then Z_{p}^{*} is a cyclic group of order p-1.

Prime-Order Cyclic Groups

Consider Z^*_{p} , where p is a strong prime.

- Strong prime: p = 2q + 1, where q is also prime.
- Recall that Z_{p}^{*} is a cyclic group of order p-1=2q.

The subgroup of quadratic residues in Z_p^* is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider Z^*_{11} . Note that 11 is a strong prime, since $11 = 2 \cdot 5 + 1$. g = 2 is a generator of Z^*_{11} :

2 ⁰	1
21	2
2 ²	4
2 ³	8
24	16 → 5
2 ⁵	10
2 ⁶	$20 \rightarrow 9$
27	$18 \rightarrow 7$
2 ⁸	$14 \rightarrow 3$
29	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^*_{\ p}$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2} = q$.

Verify:

- closure (Multiplication translates into addition in the exponent.
 Addition of two even numbers mod p − 2 gives an even number mod p − 1, since for prime p > 3, p − 1 is even.)
- Cyclic –any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^2 .

The Factoring Assumption

The factoring experiment $Factor_{A,Gen}(n)$:

- 1. Run $Gen(1^n)$ to obtain (N, p, q), where p, q are random primes of length n bits and $N = p \cdot q$.
- 2. A is given N, and outputs p', q' > 1.
- 3. The output of the experiment is defined to be 1 if $p' \cdot q' = N$, and 0 otherwise.

Definition: Factoring is hard relative to *Gen* if for all ppt algorithms *A* there exists a negligible function *neg* such that

$$\Pr[Factor_{A,Gen}(n) = 1] \le neg(n).$$

How does Gen work?

- 1. Pick random n-bit numbers p, q
- 2. Check if they are prime
- 3. If yes, return (N, p, q). If not, go back to step 1.

Why does this work?

- Prime number theorem: Primes are dense!
 - A random n-bit number is a prime with non-negligible probability.
 - Bertrand's postulate: For any n > 1, the fraction of n-bit integers that are prime is at least 1/3n.
- Can efficiently test whether a number is prime or composite:
 - If p is prime, then the Miller-Rabin test always outputs "prime." If p is composite, the algorithm outputs "composite" except with negligible probability.

The RSA Assumption

The RSA experiment $RSA - inv_{A,Gen}(n)$:

- 1. Run $Gen(1^n)$ to obtain (N, e, d), where $gcd(e, \phi(N)) = 1$ and $e \cdot d \equiv 1 \mod \phi(N)$.
- 2. Choose a uniform $y \in Z^*_{N}$.
- 3. A is given (N, e, y), and outputs $x \in Z_N^*$.
- 4. The output of the experiment is defined to be 1 if $x^e = y \mod N$, and 0 otherwise.

Definition: The RSA problem is hard relative to *Gen* if for all ppt algorithms *A* there exists a negligible function *neg* such that

$$\Pr[RSA - inv_{A,Gen}(n) = 1] \le neg(n).$$

Relationship between RSA and Factoring

Known:

- If an attacker can break factoring, then an attacker can break RSA.
 - Given p, q such that $p \cdot q = N$, can find $\phi(N)$ and d, the multiplicative inverse of $e \mod \phi(N)$.
- If an attacker can find $\phi(N)$, can break factoring.
- If an attacker can find d such that $e \cdot d \equiv 1 \mod \phi(N)$, can break factoring.

Not Known:

• Can every efficient attacker who breaks RSA also break factoring?

Due to the above, we have that the RSA assumption is a stronger assumption than the factoring assumption.