Introduction to Cryptology

Lecture 22

Announcements

- HW7 due today
- HW8 up on course webpage. Due Tuesday, 5/2.

Agenda

- Last time:
- Groups Z_{N}^{*}, for general N
- Cyclic Groups $\langle g\rangle$
- This time:
- Cyclic Groups, prime order groups
- Hard problems
- Elliptic Curve Groups

Cyclic Groups

For a finite group G of order m and $g \in G$, consider:

$$
\langle g\rangle=\left\{g^{0}, g^{1}, \ldots, g^{m-1}\right\}
$$

$\langle g\rangle$ always forms a cyclic subgroup of G. However, it is possible that there are repeats in the above list.
Thus $\langle g\rangle$ may be a subgroup of order smaller than m.
If $\langle g\rangle=G$, then we say that G is a cyclic group and that g is a generator of G.

Examples

Consider $Z^{*}{ }_{13}$:

2 is a generator of $Z^{*}{ }_{13}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 3$
2^{5}	6
2^{6}	12
2^{7}	$24 \rightarrow 11$
2^{8}	$22 \rightarrow 9$
2^{9}	$18 \rightarrow 5$
2^{10}	10
2^{11}	$20 \rightarrow 7$
2^{12}	$14 \rightarrow 1$

3 is not a generator of $Z^{*}{ }_{13}$:

3^{0}	1
3^{1}	3
3^{2}	9
3^{3}	$27 \rightarrow 1$
3^{4}	3
3^{5}	9
3^{6}	$27 \rightarrow 1$
3^{7}	3
3^{8}	9
3^{9}	$27 \rightarrow 1$
3^{10}	3
3^{11}	9
3^{12}	$27 \rightarrow 1$

Definitions and Theorems

Definition: Let G be a finite group and $g \in G$. The order of g is the smallest positive integer i such that $g^{i}=1$.

Ex: Consider Z_{13}^{*}. The order of 2 is 12 . The order of 3 is 3 .

Proposition 1: Let G be a finite group and $g \in G$ an element of order i. Then for any integer x, we have $g^{x}=g^{x \bmod i}$.

Proposition 2: Let G be a finite group and $g \in G$ an element of order i. Then $g^{x}=g^{y}$ iff $x \equiv y \bmod i$.

More Theorems

Proposition 3: Let G be a finite group of order m and $g \in G$ an element of order i. Then $i \mid m$.

Proof:

- We know by the generalized theorem of last class that $g^{m}=1=g^{0}$.
- By Proposition 1, we have that $g^{m}=g^{m \bmod i}=g^{0}$.
- By the \leftarrow direction of Proposition 2 , we have that $0 \equiv \operatorname{mmod} i$.
- By definition of modulus, this means that $i \mid m$.

Corollary: if G is a group of prime order p, then G is cyclic and all elements of G except the identity are generators of G.

Why does this follow from Proposition 3?
Theorem: If p is prime then Z^{*} is a cyclic group of order $p-1$.

Prime-Order Cyclic Groups

Consider $Z^{*}{ }_{p}$, where p is a strong prime.

- Strong prime: $p=2 q+1$, where q is also prime.
- Recall that $Z^{*}{ }_{p}$ is a cyclic group of order

$$
p-1=2 q .
$$

The subgroup of quadratic residues in $Z^{*}{ }_{p}$ is a cyclic group of prime order q.

Example of Prime-Order Cyclic Group

Consider $Z^{*}{ }_{11}$.
Note that 11 is a strong prime, since $11=2 \cdot 5+1$.
$g=2$ is a generator of $Z^{*}{ }_{11}$:

2^{0}	1
2^{1}	2
2^{2}	4
2^{3}	8
2^{4}	$16 \rightarrow 5$
2^{5}	10
2^{6}	$20 \rightarrow 9$
2^{7}	$18 \rightarrow 7$
2^{8}	$14 \rightarrow 3$
2^{9}	6

The even powers of g are the "quadratic residues" (i.e. the perfect squares). Exactly half the elements of $Z^{*} p$ are quadratic residues.

Note that the even powers of g form a cyclic subgroup of order $\frac{p-1}{2}=q$.

Verify:

- closure (Multiplication translates into addition in the exponent. Addition of two even numbers $\bmod p-2$ gives an even number $\bmod p-1$, since for prime $p>3, p-1$ is even.)
- Cyclic -any element is a generator. E.g. it is easy to see that all even powers of g can be generated by g^{2}.

The Factoring Assumption

The factoring experiment Factor $_{A, G e n}(n)$:

1. Run $\operatorname{Gen}\left(1^{n}\right)$ to obtain (N, p, q), where p, q are random primes of length n bits and $N=p \cdot q$.
2. A is given N, and outputs $p^{\prime}, q^{\prime}>1$.
3. The output of the experiment is defined to be 1 if $p^{\prime} \cdot q^{\prime}=N$, and 0 otherwise.

Definition: Factoring is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[\operatorname{Factor}_{A, G e n}(n)=1\right] \leq \operatorname{neg}(n)
$$

How does Gen work?

1. Pick random n-bit numbers p, q
2. Check if they are prime
3. If yes, return (N, p, q). If not, go back to step 1 .

Why does this work?

- Prime number theorem: Primes are dense!
- A random n-bit number is a prime with non-negligible probability.
- Bertrand's postulate: For any $n>1$, the fraction of n-bit integers that are prime is at least $1 / 3 n$.
- Can efficiently test whether a number is prime or composite:
- If p is prime, then the Miller-Rabin test always outputs "prime." If p is composite, the algorithm outputs "composite" except with negligible probability.

The RSA Assumption

The RSA experiment $R S A-\operatorname{inv} v_{A, G e n}(n)$:

1. Run $\operatorname{Gen}\left(1^{n}\right)$ to obtain (N, e, d), where $\operatorname{gcd}(e, \phi(N))=$ 1 and $e \cdot d \equiv 1 \bmod \phi(N)$.
2. Choose a uniform $y \in Z^{*}{ }_{N}$.
3. A is given (N, e, y), and outputs $x \in Z^{*}{ }_{N}$.
4. The output of the experiment is defined to be 1 if $x^{e}=y \bmod N$, and 0 otherwise.

Definition: The RSA problem is hard relative to Gen if for all ppt algorithms A there exists a negligible function neg such that

$$
\operatorname{Pr}\left[R S A-\operatorname{in} v_{A, G e n}(n)=1\right] \leq \operatorname{neg}(n)
$$

Relationship between RSA and

Factoring

Known:

- If an attacker can break factoring, then an attacker can break RSA.
- Given p, q such that $p \cdot q=N$, can find $\phi(N)$ and d, the multiplicative inverse of $e \bmod \phi(N)$.
- If an attacker can find $\phi(N)$, can break factoring.
- If an attacker can find d such that $e \cdot d \equiv 1 \bmod \phi(N)$, can break factoring.

Not Known:

- Can every efficient attacker who breaks RSA also break factoring?

Due to the above, we have that the RSA assumption is a stronger assumption than the factoring assumption.

