
Introduction to Cryptology 

Lecture 22 



Announcements 

• HW7 due today 

• HW8 up on course webpage. Due Tuesday, 
5/2. 



Agenda 

• Last time: 

– Groups 𝑍𝑁
∗ , for general 𝑁 

– Cyclic Groups 𝑔  

 

• This time: 

– Cyclic Groups, prime order groups 

– Hard problems 

– Elliptic Curve Groups 



Cyclic Groups 

For a finite group 𝐺 of order 𝑚 and 𝑔 ∈ 𝐺, 
consider: 

𝑔 = {𝑔0, 𝑔1, … , 𝑔𝑚−1} 
𝑔  always forms a cyclic subgroup of 𝐺. 

However, it is possible that there are repeats in the 
above list. 
Thus 𝑔  may be a subgroup of order smaller than 
𝑚. 
If 𝑔 = 𝐺, then we say that 𝐺 is a cyclic group and 
that 𝑔 is a generator of 𝐺. 



Examples 
Consider 𝑍∗13: 

 

 
20 1 

21 2 

22 4 

23 8 

24 16 → 3 

25 6 

26 12 

27 24 → 11 

28 22 → 9 

29 18 → 5 

210 10 

211 20 → 7 

212 14 → 1 

2 is a generator of 𝑍∗13: 3 is not a generator of 𝑍∗13: 

30 1 

31 3 

32 9 

33 27 → 1 

34 3 

35 9 

36 27 → 1 

37 3 

38 9 

39 27 → 1 

310 3 

311 9 

312 27 → 1 



Definitions and Theorems 

Definition:  Let 𝐺 be a finite group and 𝑔 ∈ 𝐺.  The order 
of 𝑔 is the smallest positive integer 𝑖 such that 𝑔𝑖 = 1. 
 Ex:  Consider 𝑍13

∗ .  The order of 2 is 12.  The order 
 of 3 is 3. 
 
Proposition 1: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖.  Then for any integer 𝑥, we have 
𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑖. 
 
Proposition 2: Let 𝐺 be a finite group and 𝑔 ∈ 𝐺 an 
element of order 𝑖. Then 𝑔𝑥 = 𝑔𝑦 iff 𝑥 ≡ 𝑦 𝑚𝑜𝑑 𝑖. 



More Theorems 

Proposition 3:  Let 𝐺 be a finite group of order 𝑚 and 𝑔 ∈ 𝐺 an element of 
order 𝑖.  Then 𝑖 |𝑚. 
 
Proof:   
• We know by the generalized theorem of last class that 𝑔𝑚 = 1 = 𝑔0. 
• By Proposition 1, we have that 𝑔𝑚 = 𝑔𝑚 𝑚𝑜𝑑 𝑖 = 𝑔0. 
• By the ← direction of Proposition 2, we have that 0 ≡ 𝑚 𝑚𝑜𝑑 𝑖. 
• By definition of modulus, this means that 𝑖|𝑚. 
 
Corollary:  if 𝐺 is a group of prime order 𝑝, then 𝐺 is cyclic and all elements of 
𝐺 except the identity are generators of 𝐺. 
 
Why does this follow from Proposition 3? 
 

Theorem:  If 𝑝 is prime then 𝑍∗
𝑝 is a cyclic group of order 𝑝 − 1.  



Prime-Order Cyclic Groups 

Consider 𝑍∗
𝑝, where 𝑝 is a strong prime. 

• Strong prime:  𝑝 = 2𝑞 + 1, where 𝑞 is also 
prime. 

• Recall that 𝑍∗
𝑝 is a cyclic group of order 

𝑝 − 1 = 2𝑞. 

 

The subgroup of quadratic residues in 𝑍∗
𝑝 is a 

cyclic group of prime order 𝑞. 



Example of Prime-Order Cyclic Group 
Consider 𝑍∗

11. 

Note that 11 is a strong prime, since 11 = 2 ⋅ 5 + 1. 

𝑔 = 2 is a generator of 𝑍∗
11: 

 20 1 

21 2 

22 4 

23 8 

24 16 → 5 

25 10 

26 20 → 9 

27 18 → 7 

28 14 → 3 

29 6 

The even powers of 𝑔 are the “quadratic residues” (i.e. the perfect 
squares).  Exactly half the elements of 𝑍∗

𝑝 are quadratic residues. 

 
Note that the even powers of 𝑔 form a cyclic subgroup of order 
𝑝−1

2
= 𝑞. 

 
Verify:   
• closure (Multiplication translates into addition in the exponent.  

Addition of two even numbers mod 𝑝 − 2 gives an even number 
mod 𝑝 − 1, since for prime 𝑝 > 3, 𝑝 − 1 is even.) 

• Cyclic –any element is a generator.  E.g. it is easy to see that all 
even powers of 𝑔 can be generated by 𝑔2. 

  



The Factoring Assumption 

The factoring experiment 𝐹𝑎𝑐𝑡𝑜𝑟𝐴,𝐺𝑒𝑛 𝑛 : 
1. Run 𝐺𝑒𝑛 1𝑛  to obtain (𝑁, 𝑝, 𝑞), where 𝑝, 𝑞 are 

random primes of length 𝑛 bits and 𝑁 = 𝑝 ⋅ 𝑞. 
2. 𝐴 is given 𝑁, and outputs 𝑝′, 𝑞′ > 1. 
3. The output of the experiment is defined to be 1 if 
𝑝′ ⋅ 𝑞′ = 𝑁, and 0 otherwise. 

 
Definition: Factoring is hard relative to 𝐺𝑒𝑛 if for all ppt 
algorithms 𝐴 there exists a negligible function 𝑛𝑒𝑔 such 
that  

Pr 𝐹𝑎𝑐𝑡𝑜𝑟𝐴,𝐺𝑒𝑛 𝑛 = 1 ≤ 𝑛𝑒𝑔 𝑛 . 



How does 𝐺𝑒𝑛 work? 
1. Pick random 𝑛-bit numbers 𝑝, 𝑞 
2. Check if they are prime 
3. If yes, return 𝑁, 𝑝, 𝑞 .  If not, go back to step 1. 
 
Why does this work? 
• Prime number theorem:  Primes are dense!   

– A random n-bit number is a prime with non-negligible probability. 
– Bertrand’s postulate: For any 𝑛 > 1, the fraction of 𝑛-bit integers 

that are prime is at least 1/3𝑛. 

• Can efficiently test whether a number is prime or composite: 
– If 𝑝 is prime, then the Miller-Rabin test always outputs “prime.”  If 
𝑝 is composite, the algorithm outputs “composite” except with 
negligible probability.   



The RSA Assumption 

The RSA experiment 𝑅𝑆𝐴 − 𝑖𝑛𝑣𝐴,𝐺𝑒𝑛 𝑛 : 

1. Run 𝐺𝑒𝑛 1𝑛  to obtain (𝑁, 𝑒, 𝑑), where gcd 𝑒, 𝜙 𝑁 =
1 and 𝑒 ⋅ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙(𝑁). 

2. Choose a uniform 𝑦 ∈ 𝑍∗𝑁. 

3. 𝐴 is given (𝑁, 𝑒, 𝑦), and outputs 𝑥 ∈ 𝑍∗𝑁. 

4. The output of the experiment is defined to be 1 if 
𝑥𝑒 = 𝑦 𝑚𝑜𝑑 𝑁, and 0 otherwise. 

 
Definition: The RSA problem is hard relative to 𝐺𝑒𝑛 if for all 
ppt algorithms 𝐴 there exists a negligible function 𝑛𝑒𝑔 such 
that  

Pr 𝑅𝑆𝐴 − 𝑖𝑛𝑣𝐴,𝐺𝑒𝑛 𝑛 = 1 ≤ 𝑛𝑒𝑔 𝑛 . 



Relationship between RSA and 
Factoring 

Known: 
• If an attacker can break factoring, then an attacker can break RSA. 

– Given 𝑝, 𝑞 such that 𝑝 ⋅ 𝑞 = 𝑁, can find 𝜙(𝑁) and 𝑑, the multiplicative 
inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁). 

• If an attacker can find 𝜙(𝑁), can break factoring. 
• If an attacker can find 𝑑 such that 𝑒 ⋅ 𝑑 ≡ 1 𝑚𝑜𝑑 𝜙 𝑁 , can break 

factoring. 
 
Not Known: 
• Can every efficient attacker who breaks RSA also break factoring? 
 
Due to the above, we have that the RSA assumption is a stronger 
assumption than the factoring assumption.  


