Introduction to Cryptology



Announcements

* HW7 due Tuesday 4/25



Agenda

e Lasttime:

— Repeated Squaring Algorithm
— Extended Euclidean Algorithm
— Chinese Remainder Theorem

* This time:
— More Number theory background
— Hard problems



Generalized Theorem

Theorem: Let G be a finite group withm = |G|,
the order of the group. Then for any element
geG,gm"=1.

Corollary of Fermat’s Little Theorem is a special
case of the above when G is the multiplicative
group Z*p and p is prime.



Multiplicative Groups Mod N

What about multiplicative groups modulo N, where N
is composite?

Which numbers {1, ..., N — 1} have multiplicative
inverses mod N?

— a such that gcd(a, N) = 1 has multiplicative inverse by
Extended Euclidean Algorithm.

— a such that gcd(a, N) > 1 does not, since gcd(a, N) is the

smallest positive integer that can be written in the form
Xa + YN forinteger X,Y.

Define Z*, :={a € {1, ..., N — 1}| gcd(a, N) = 1}.
Z” is an abelian, multiplicative group.

N
— Why does closure hold?



Order of Multiplicative Groups Mod N

e What is the order of Z*N?

 This has a name. The order on*N is the

quantity ¢ (IV), where ¢ is known as the Euler
totient function or Euler phi function.

* Assume N = p - q, where p, g are distinct
primes.
-¢(N)=N —p-—q+1=p-q —p -1+1=
(p —1(q - 1).
— Why?



Order of Multiplicative Groups Mod N

General Formula:

Theorem: Let N = []; p;%t where the {p;} are
distinct primes and e¢; = 1. Then

$(N) = Hpiei‘l(pi —-1).



Another Special Case of Generalized
Theorem

Corollary of generalized theorem:

For a such that gcd(a,N) = 1:
a®?®™) =1 mod N.



Another Useful Theorem

Theorem: Let G be a finite group withm = |G| >

1. Then forany g € G and any integer x, we have
gx — gxmod m

Proof: We writex = a-m + b, where a is an
integer and b = x mod m.

o gx — ga-m+b — (gm)a . gb
* By “generalized theorem” we have that
(gm)a,gb — 1a,gb — gb — gxmodm_



An Example:

Compute 3%° mod 35 by hand.

d(35)=¢p(5:-7)=0GB-1)(7-1) =24
325 = 325mo0d 24 16 35 = 31 mod 35
= 3 mod 35.



Background for RSA

Recall that we saw last time that
a™ = gmmod ¢(N) ;mod N.

Fore € Z*,, let f,: Zy — Zj be defined as f,(x) := x® mod N.

Theorem: f,(x) is a permutation.

Proof: To prove the theorem, we show that f,(x) is invertible.
Let d be the multiplicative inverse of e mod ¢(N).

Then fory € Z5, f2(y) == y¢ mod N is the inverse of f,.

To see this, we show that f;(f,(x)) = x.
f1(£(x) = (x)? mod N = x** mod N = x¢2™M02¢WN) ;mod N = x* mod N =
x mod N.

Note: Given d, it is easy to compute the inverse of f,

However, we saw in the homework that given only e, N, it is hard to find d, since
finding d implies that we can factor N = p - q.

This will be important for cryptographic applications.



Toolbox for Cryptographic
Multiplicative Groups

Can be done efficiently No efficient algorithm believed to exist

Modular multiplication Factoring
Finding multiplicative inverses (extended RSA problem
Euclidean algorithm)
Modular exponentiation (via repeated Discrete logarithm problem
squaring)

Diffie Hellman problems

We have seen the efficient algorithms in the left column.
We will now start talking about the “hard problems” in the right
column.



Cyclic Groups

For a finite group G of order mand g € G,
consider:

(9)=19"9" ...9" "}
(g) always forms a cyclic subgroup of G.

However, it is possible that there are repeats in the
above list.

Thus (g) may be a subgroup of order smaller than
m

If (g) = G, then we say that G is a cyclic group and
that g is a generator of G.



Examples

Consider Z*13:

2 is a generator of Z*_,: 3 is not a generator of Z*_,:
20 1 30 1
21 2 31 3
22 4 32 9
2 8 33 | 271
24 | 163 3* 3
25 6 35 9
2° 12 36 | 2751
27 | 24> 11 37 3
28 | 22-9 38 9
2° | 1855 3% | 271
210 10 310 3
211 | 2057 39
212 | 141 312 | 271




