
Introduction to Cryptology 

Lecture 21 



Announcements 

• HW7 due Tuesday 4/25 



Agenda 

• Last time: 

– Repeated Squaring Algorithm 

– Extended Euclidean Algorithm 

– Chinese Remainder Theorem 

 

• This time: 

– More Number theory background 

– Hard problems 



Generalized Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = |𝐺|, 
the order of the group.  Then for any element 
𝑔 ∈ 𝐺, 𝑔𝑚 = 1. 

 

Corollary of Fermat’s Little Theorem is a special 
case of the above when 𝐺 is the multiplicative 
group 𝑍∗𝑝 and 𝑝 is prime. 



Multiplicative Groups Mod N 

• What about multiplicative groups modulo 𝑁, where 𝑁 
is composite? 

• Which numbers 1,… ,𝑁 − 1  have multiplicative 
inverses 𝑚𝑜𝑑 𝑁? 
– 𝑎 such that gcd 𝑎,𝑁 = 1 has multiplicative inverse by 

Extended Euclidean Algorithm. 
– 𝑎 such that gcd 𝑎,𝑁 > 1  does not, since gcd 𝑎,𝑁  is the 

smallest positive integer that can be written in the form 
𝑋𝑎 + 𝑌𝑁 for integer 𝑋, 𝑌. 

• Define 𝑍∗𝑁 ≔ {𝑎 ∈ 1,… ,𝑁 − 1 | gcd 𝑎,𝑁 = 1}.   

• 𝑍∗𝑁 is an abelian, multiplicative group. 
– Why does closure hold? 



Order of Multiplicative Groups Mod N 

• What is the order of 𝑍∗𝑁? 

• This has a name.  The order of 𝑍∗𝑁 is the 
quantity 𝜙(𝑁), where 𝜙 is known as the Euler 
totient function or Euler phi function. 

• Assume 𝑁 = 𝑝 ⋅ 𝑞, where 𝑝, 𝑞 are distinct 
primes. 

– 𝜙 𝑁 = 𝑁 − 𝑝 − 𝑞 + 1 = 𝑝 ⋅ 𝑞 − 𝑝 − 1 + 1 =
𝑝 − 1 𝑞 − 1 . 

– Why? 

 



Order of Multiplicative Groups Mod N 

General Formula: 

Theorem:  Let 𝑁 =  𝑝𝑖
𝑒𝑖

𝑖  where the 𝑝𝑖  are 
distinct primes and 𝑒𝑖 ≥ 1.  Then 

𝜙 𝑁 =  𝑝𝑖
𝑒𝑖−1(𝑝𝑖 − 1)

𝑖

. 



Another Special Case of Generalized 
Theorem 

Corollary of generalized theorem: 

For 𝑎 such that gcd 𝑎, 𝑁 = 1: 

𝑎𝜙(𝑁) ≡ 1 𝑚𝑜𝑑 𝑁. 



Another Useful Theorem 

Theorem:  Let 𝐺 be a finite group with 𝑚 = 𝐺 >
1.  Then for any 𝑔 ∈ 𝐺 and any integer 𝑥, we have 

𝑔𝑥 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 

Proof:  We write 𝑥 = 𝑎 ⋅ 𝑚 + 𝑏, where 𝑎 is an 
integer and 𝑏 ≡ 𝑥 𝑚𝑜𝑑 𝑚. 

• 𝑔𝑥 = 𝑔𝑎⋅𝑚+𝑏 = 𝑔𝑚 𝑎 ⋅ 𝑔𝑏 

• By “generalized theorem” we have that  
𝑔𝑚 𝑎 ⋅ 𝑔𝑏 = 1𝑎 ⋅ 𝑔𝑏 = 𝑔𝑏 = 𝑔𝑥 𝑚𝑜𝑑 𝑚. 

 



An Example: 

Compute 325 𝑚𝑜𝑑 35 by hand. 

 
𝜙 35 = 𝜙 5 ⋅ 7 = 5 − 1 7 − 1 = 24 

325 ≡ 325 𝑚𝑜𝑑 24 𝑚𝑜𝑑 35 ≡ 31 𝑚𝑜𝑑 35
≡ 3 𝑚𝑜𝑑 35. 



Background for RSA 
Recall that we saw last time that  

 𝑎𝑚 ≡ 𝑎𝑚 𝑚𝑜𝑑 𝜙 𝑁  𝑚𝑜𝑑 𝑁. 
 

For 𝑒 ∈ 𝑍∗𝑁, let 𝑓𝑒: 𝑍𝑁
∗ → 𝑍𝑁

∗  be defined as 𝑓𝑒 𝑥 ≔ 𝑥
𝑒 𝑚𝑜𝑑 𝑁. 

 
Theorem:  𝑓𝑒(𝑥) is a permutation. 
Proof:  To prove the theorem, we show that 𝑓𝑒(𝑥) is invertible. 
Let 𝑑 be the multiplicative inverse of 𝑒 𝑚𝑜𝑑 𝜙(𝑁). 
Then for 𝑦 ∈ 𝑍𝑁

∗ , 𝑓𝑑 𝑦 ≔ 𝑦
𝑑 𝑚𝑜𝑑 𝑁 is the inverse of 𝑓𝑒. 

 
To see this, we show that 𝑓𝑑 𝑓𝑒 𝑥 = 𝑥. 

𝑓𝑑 𝑓𝑒 𝑥 = 𝑥
𝑒 𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝑁 = 𝑥𝑒⋅𝑑 𝑚𝑜𝑑 𝜙(𝑁) 𝑚𝑜𝑑 𝑁 = 𝑥1 𝑚𝑜𝑑 𝑁 =

𝑥 𝑚𝑜𝑑 𝑁.  
 
Note:  Given 𝑑, it is easy to compute the inverse of 𝑓𝑒 
However, we saw in the homework that given only 𝑒, 𝑁, it is hard to find 𝑑, since 
finding 𝑑 implies that we can factor 𝑁 = 𝑝 ⋅ 𝑞. 
This will be important for cryptographic applications.  



Toolbox for Cryptographic 
Multiplicative Groups 

Can be done efficiently No efficient algorithm believed to exist 

Modular multiplication Factoring  

Finding multiplicative inverses (extended 
Euclidean algorithm) 

RSA problem 

Modular exponentiation (via repeated 
squaring) 

Discrete logarithm problem 

Diffie Hellman problems 

We have seen the efficient algorithms in the left column. 
We will now start talking about the “hard problems” in the right 
column. 



Cyclic Groups 

For a finite group 𝐺 of order 𝑚 and 𝑔 ∈ 𝐺, 
consider: 

𝑔 = {𝑔0, 𝑔1, … , 𝑔𝑚−1} 
𝑔  always forms a cyclic subgroup of 𝐺. 

However, it is possible that there are repeats in the 
above list. 
Thus 𝑔  may be a subgroup of order smaller than 
𝑚. 
If 𝑔 = 𝐺, then we say that 𝐺 is a cyclic group and 
that 𝑔 is a generator of 𝐺. 



Examples 
Consider 𝑍∗13: 

 

 
20 1 

21 2 

22 4 

23 8 

24 16 → 3 

25 6 

26 12 

27 24 → 11 

28 22 → 9 

29 18 → 5 

210 10 

211 20 → 7 

212 14 → 1 

2 is a generator of 𝑍∗13: 3 is not a generator of 𝑍∗13: 

30 1 

31 3 

32 9 

33 27 → 1 

34 3 

35 9 

36 27 → 1 

37 3 

38 9 

39 27 → 1 

310 3 

311 9 

312 27 → 1 


